Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases

Abstract

Histone modifications might act to mark and maintain functional chromatin domains during both interphase and mitosis. Here we show that pericentric heterochromatin in mammalian cells is specifically responsive to prolonged treatment with deacetylase inhibitors. These defined regions relocate at the nuclear periphery and lose their properties of retaining HP1 (heterochromatin protein 1) proteins. Subsequent defects in chromosome segregation arise in mitosis. All these changes can reverse rapidly after drug removal. Our data point to a crucial role of histone underacetylation within pericentric heterochromatin regions for their association with HP1 proteins, their nuclear compartmentalization and their contribution to centromere function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment with a histone deacetylase inhibitor (TSA) reversibly induces the relocation of methylated pericentric heterochromatin towards the nuclear periphery.
Figure 2: Treatment with TSA reversibly induces the relocation of centromeric proteins at the nuclear periphery.
Figure 3: Perinuclear localization of centromeric regions is not observed at any phase of the cell cycle.
Figure 4: TSA treatment reversibly disrupts HP1α domains of concentration at pericentromeric regions.
Figure 5: Treatment with TSA induces a decrease in the Triton-resistant nuclear pool of HP1α, HP1β or HP1γ associated with pericentric heterochromatin.
Figure 6: Exogenous HP1α can be retained at pericentric heterochromatin in permeabilized control cells but not in TSA-treated cells.
Figure 7: TSA induces defective mitosis.

Similar content being viewed by others

References

  1. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547– 553 (1998).

    Article  CAS  Google Scholar 

  2. Cockell, M. & Gasser, S. M. Nuclear compartments and gene regulation. Curr. Opin. Genet. Dev. 9, 199 –205 (1999).

    Article  CAS  Google Scholar 

  3. Dobie, K. W., Hari, K. L., Maggert, K. A. & Karpen, G. H. Centromere proteins and chromosome inheritance: a complex affair. Curr. Opin. Genet. Dev. 9, 206–217 (1999).

    Article  CAS  Google Scholar 

  4. Craig, J. M., Earnshaw, W. C. & Vagnarelli, P. Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp. Cell Res. 246, 249–262 (1999).

    Article  CAS  Google Scholar 

  5. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).

    Article  CAS  Google Scholar 

  6. Jones, D. O., Cowel, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22, 124–137 (2000).

    Article  CAS  Google Scholar 

  7. Wakimoto, B. T. Beyond the nucleosome: epigenetic aspects of position–effect variegation in Drosophila. Cell 93, 321– 324 (1998).

    Article  CAS  Google Scholar 

  8. Festenstein, R. et al. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Nature Genet. 23, 457–461 (1999).

    Article  CAS  Google Scholar 

  9. Ekwall, K. et al. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429– 1431 (1995).

    Article  CAS  Google Scholar 

  10. Kellum, R. & Alberts, B. M. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci. 108, 1419–1431 (1995).

    CAS  PubMed  Google Scholar 

  11. Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54, 21– 31 (1998).

    Article  CAS  Google Scholar 

  12. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).

    Article  CAS  Google Scholar 

  13. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones . Cell 93, 325–328 (1998).

    Article  CAS  Google Scholar 

  14. Ekwall, K., Olsson, T., Turner, B. M., Cranston, G. & Allshire, R. C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021– 1032 (1997).

    Article  CAS  Google Scholar 

  15. Grewal, S. I., Bonaduce, M. J. & Klar, A. J. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150, 563– 576 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Taddei, A., Roche, D., Sibarita, J.B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166 (1999).

    Article  CAS  Google Scholar 

  17. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases . Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  18. Paro, R. Chromatin regulation. Formatting genetic text. Nature 406, 579–580 (2000).

    Article  CAS  Google Scholar 

  19. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423–430 ( 1995).

    Article  CAS  Google Scholar 

  20. Cerda, M. C., Berrios, S., Fernandez-Donoso, R., Garagna, S. & Redi, C. Organisation of complex nuclear domains in somatic mouse cells. Biol. Cell 91, 55 –65 (1999).

    Article  CAS  Google Scholar 

  21. Bird, A. The essentials of DNA methylation. Cell 70, 5–8 (1992).

    Article  CAS  Google Scholar 

  22. Habib, M. et al. DNA global hypomethylation in EBV-transformed interphase nuclei . Exp. Cell Res. 249, 46– 53 (1999).

    Article  CAS  Google Scholar 

  23. Earnshaw, W. C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313– 321 (1985).

    Article  CAS  Google Scholar 

  24. Belyaev, N. D., Keohane, A. M. & Turner, B. M. Histone H4 acetylation and replication timing in Chinese hamster chromosomes. Exp. Cell Res. 225, 277–285 (1996).

    Article  CAS  Google Scholar 

  25. Misteli, T. & Spector, D. L. The cellular organization of gene expression. Curr. Opin. Cell Biol. 10, 323–331 (1998).

    Article  CAS  Google Scholar 

  26. Puvion-Dutilleul, F. et al. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur. J. Cell Biol. 58, 149–162 ( 1992).

    CAS  PubMed  Google Scholar 

  27. Marheineke, K. & Krude, T. Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle. J. Biol. Chem. 273, 15279–15286 (1998).

    Article  CAS  Google Scholar 

  28. Martini, E, Roche, D. M., Marheineke, K., Verreault, A. & Almouzni, G. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J. Cell Biol. 143, 563–575 (1998).

    Article  CAS  Google Scholar 

  29. Remboutsika, E. et al. The putative nuclear receptor mediator TIF1α is tightly associated with euchromatin. J. Cell Sci. 112, 1671–1683 (1999).

    CAS  Google Scholar 

  30. Nielsen, A. L. et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18 , 6385–6395 (1999).

    Article  CAS  Google Scholar 

  31. Dini, L., Coppola, S., Ruzittu, M. T. & Ghibelli, L. Multiple pathways for apoptotic nuclear fragmentation. Exp. Cell Res. 223, 340–347 ( 1996).

    Article  CAS  Google Scholar 

  32. Marrazzini, A., Betti, C., Bernacchi, F., Barrai, I. & Barale, R. Micronucleus test and metaphase analyses in mice exposed to known and suspected spindle poisons. Mutagenesis 9, 505–515 (1994).

    Article  CAS  Google Scholar 

  33. Shimizu, N., Itoh, N., Utiyama, H. & Wahl, G. M. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J. Cell Biol. 140, 1307– 1320 (1998).

    Article  CAS  Google Scholar 

  34. Sogo, J. M. & Laskey, R. A. in Chromatin Structure and Gene Expression (ed. Elgin, S. C. R.) 49–71 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  35. Zhao, T., Heyduk, T., Allis, C. D. & Eissenberg, J. C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem. 275, 28332–28338 ( 2000).

    CAS  PubMed  Google Scholar 

  36. Knoepfler, P. S. & Eisenman, R. N. Sin meets NuRD and other tails of repression. Cell 99, 447–450 (1999).

    Article  CAS  Google Scholar 

  37. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet. 25, 338–342 (2000).

    Article  CAS  Google Scholar 

  38. Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet. 25, 269–277 (2000).

    Article  CAS  Google Scholar 

  39. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 , 187–191 (1999).

    Article  CAS  Google Scholar 

  40. Turner, B. M. & Fellows, G. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells . Eur. J. Biochem. 179, 131– 139 (1989).

    Article  CAS  Google Scholar 

  41. Maison, C., Pyrpasopoulou, A. & Georgatos, S. D. Vimentin-associated mitotic vesicles interact with chromosomes in a lamin B- and phosphorylation-dependent manner. EMBO J. 14, 3311–3324 ( 1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Chambon, B. Turner, C. Marheineke and A. Niveleau for providing antibodies, W. Earnshaw for the HP1–GST clone, ACA and anti-CENP-C antibodies, and J. Mello for critical reading. A.T. was supported by fellowships from the Ministère de l'Éducation Nationale et de l'Enseignement Supérieur de la Recherche et de la Technologie, l'Association de la Recherche sur le Cancer and the Human Frontier Science Foundation. This work was supported by EU TMR and by Ligue National contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni.

Supplementary information

Figure S1 DNA-synthesis inhibitors do not affect the localization of centromeres.

Figure S2  Three different inhibitors of histone deacetylases affect pericentric regions similarly to TSA. (PDF 197 kb)

Figure S3 Inhibition of DNA methylation with 5-azacytidine does not affect the association of HP1 with pericentric regions.

Supplementary references.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taddei, A., Maison, C., Roche, D. et al. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3, 114–120 (2001). https://doi.org/10.1038/35055010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing