Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific interference with gene function by double-stranded RNA in early mouse development

Abstract

The use of double-stranded (ds) RNA is a powerful way of interfering with gene expression in a range of organisms, but doubts have been raised about whether it could be successful in mammals. Here, we show that dsRNA is effective as a specific inhibitor of the function of three genes in the mouse, namely maternally expressed c-mos in the oocyte and zygotically expressed E-cadherin or a GFP transgene in the preimplantation embryo. The phenotypes observed are the same as those reported for null mutants of the endogenous genes. These findings offer the opportunity to study development and gene regulation in normal and diseased cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MmGFP dsRNA specifically abrogates MmGFP expression in MmGFP transgenic embryos.
Figure 2: Interference with expression of injected synthetic MmGFP mRNA.
Figure 3: Injection of E-cadherin dsRNA to the zygote reduces E-cadherin expression and perturbs the development of the injected embryos.
Figure 4: Incidence of cavity formation after injection of E-cadherin dsRNA into the zygote.
Figure 5: Injection of c-mos dsRNA into immature oocytes inhibits c-mos expression and causes parthenogenetic activation.
Figure 6: Incidence of spontaneous activation and fragmentation after injection of c-mos dsRNA into the germinal-vesicle-stage oocyte.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  2. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  Google Scholar 

  3. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998).

    Article  CAS  Google Scholar 

  4. Sanchez Alvarado, A. & Newmark, P. A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl Acad. Sci. USA 96, 5049–5054 (1999).

    Article  CAS  Google Scholar 

  5. Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959–13964 (1998).

    Article  CAS  Google Scholar 

  6. Wargelius, A., Ellingsen, S. & Fjose, A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem. Biophys. Res. Commun. 263, 156–161 (1999).

    Article  CAS  Google Scholar 

  7. Lee, S. B. & Esteban, M. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199, 491–496 (1994).

    Article  CAS  Google Scholar 

  8. Zernicka-Goetz, M. et al. Following cell fate in the living mouse embryo. Development 124, 1133–1137 (1997).

    CAS  PubMed  Google Scholar 

  9. Wianny, F., Tavares, A., Evans, M. J., Glover, D. M. & Zernicka-Goetz, M. Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and spindle midzone during oocyte maturation. Chromosoma 107, 430–439 (1998).

    Article  CAS  Google Scholar 

  10. Zernicka-Goetz, M. in Cell Lineage and Fate Determination (ed. Moody, S. A.) 521–527 (Academic, San Diego, 1999).

    Book  Google Scholar 

  11. Colledge, W. H., Carlton, M. B., Udy, G. B. & Evans, M. J. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370, 65–68 (1994).

    Article  CAS  Google Scholar 

  12. Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267 (1994).

    Article  CAS  Google Scholar 

  13. Riethmacher, D., Brinkmann, V. & Birchmeier, C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc. Natl Acad. Sci. USA 92, 855–859 (1995).

    Article  CAS  Google Scholar 

  14. Sefton, M., Johnson, M. H. & Clayton, L. Synthesis and phosphorylation of uvomorulin during mouse early development. Development 115, 313–318 (1992).

    CAS  PubMed  Google Scholar 

  15. Hashimoto, N. et al. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370, 68–71 (1994).

    Article  CAS  Google Scholar 

  16. Verlhac, M. H. et al. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122, 815–822 (1996).

    CAS  PubMed  Google Scholar 

  17. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).

    Article  CAS  Google Scholar 

  18. Marcus, P. I. Interferon induction by viruses: one molecule of dsRNA as the threshold for interferon induction. Interferon 5, 115–180 (1983).

    CAS  PubMed  Google Scholar 

  19. Clemens, M. J. PKR — a protein kinase regulated by double-stranded RNA. Int. J. Biochem. Cell Biol. 29, 945–949 (1997).

    Article  CAS  Google Scholar 

  20. Bass, B. L. & Weintraub, H. A developmentally regulated activity that unwinds RNA duplexes. Cell 48, 607–613 (1987).

    Article  CAS  Google Scholar 

  21. Rebagliati, M. R. & Melton, D. A. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48, 599–605 (1987).

    Article  CAS  Google Scholar 

  22. Sharp, P. A. RNAi and double-strand RNA. Genes Dev 13, 139–141 (1999).

    Article  CAS  Google Scholar 

  23. Bevilacqua, A., Erickson, R. P. & Hieber, V. Antisense RNA inhibits endogenous gene expression in mouse preimplantation embryos: lack of double-stranded RNA ‘melting’ activity. Proc. Natl Acad. Sci. USA 85, 831–835 (1988).

    Article  CAS  Google Scholar 

  24. Paules, R. S., Buccione, R., Moschel, R. C., Vande Woude, G. F. & Eppig, J. J. Mouse Mos protooncogene product is present and functions during oogenesis. Proc. Natl Acad. Sci. USA 86, 5395–5399 (1989).

    Article  CAS  Google Scholar 

  25. Weber, R. J., Pedersen, R. A., Wianny, F., Evans, M. J. & Zernicka-Goetz, M. Polarity of the mouse embryo is anticipated before implantation. Development 126, 5591–5598 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Glover for suggestions and support throughout the course of this work; J. Gurdon for the initial idea of injecting mRNA into embryos; A. McLaren for her suggestion of the use of E-cadherin as a marker; L. Larue for E-cadherin plasmids and antibody; B. Colledge for the c-mos plasmid; P.-Y. Bourillot for subcloning the c-mos construct and for helpful discussions; R. Weber for supportive discussions and help in initiating microinjection experiments; M. Evans for his enthusiasm and support with the initiation of this work; and B. Tom for the help with the statistical analysis. This work was supported by a CRC Grant to M.Z.-G., D. Glover and M. Evans. M.Z.-G. is a Senior Research Fellow of the Lister Institute for Preventive Medicine, and a Stanley Elmore Fellow of Sydney Sussex College.

Correspondence and requests for materials should be addressed to M.Z.-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zernicka-Goetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wianny, F., Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70–75 (2000). https://doi.org/10.1038/35000016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing