Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Controlling Abl: auto-inhibition and co-inhibition?

Abstract

Auto-inhibition describes the capacity of proteins to adopt a self-imposed latent conformation. Recently, a crystal structure of the Abl tyrosine kinase has revealed its ability to auto-inhibit. However, a separate body of work suggests that other cellular proteins also inhibit Abl. To reconcile the crystal structure with Abl inhibitors, I propose that Abl is controlled by cellular 'co-inhibitors' that bind Abl, stabilizing the auto-inhibited conformation. The implication of co-inhibition on Abl function is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the primary and tertiary structures of Abl.
Figure 2: A model of co-inhibition and conformational transitions for Abl.

Similar content being viewed by others

References

  1. Woodring, P.J., Hunter, T. & Wang, J.Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci. 116, 2613–2626 (2003).

    Article  CAS  Google Scholar 

  2. Puri, P.L. et al. A myogenic differentiation checkpoint activated by genotoxic stress. Nature Genet. 32, 585–593 (2002).

    Article  CAS  Google Scholar 

  3. Wang, J.Y. Regulation of cell death by the Abl tyrosine kinase. Oncogene 19, 5643–5650 (2000).

    Article  CAS  Google Scholar 

  4. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-Abl tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  5. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-Abl gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  Google Scholar 

  6. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  7. Kemp, B.E. & Pearson, R.B. Intrasteric regulation of protein kinases and phosphatases. Biochim Biophys Acta 1094, 67–76 (1991).

    Article  CAS  Google Scholar 

  8. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  9. Robinson, D.R., Wu, Y.M. & Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene 19, 5548–5557 (2000).

    Article  CAS  Google Scholar 

  10. Harrison, S.C. Variation on an Src-like theme. Cell 112, 737–740 (2003).

    Article  CAS  Google Scholar 

  11. Barila, D. & Superti-Furga, G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nature Genet. 18, 280–282 (1998).

    Article  CAS  Google Scholar 

  12. Brasher, B.B. & Van Etten, R.A. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J. Biol. Chem. 275, 35631–35637 (2000).

    Article  CAS  Google Scholar 

  13. Tanis, K.Q., Veach, D., Duewel, H.S., Bornmann, W.G. & Koleske, A.J. Two distinct phosphorylation pathways have additive effects on abl family kinase activation. Mol. Cell. Biol. 23, 3884–3896 (2003).

    Article  CAS  Google Scholar 

  14. Nagar, B. et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236–4243 (2002).

    CAS  PubMed  Google Scholar 

  15. Azam, M., Latek, R.R. & Daley, G.Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-Abl. Cell 112, 831–843 (2003).

    Article  CAS  Google Scholar 

  16. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  Google Scholar 

  17. Pluk, H., Dorey, K. & Superti-Furga, G. Autoinhibition of c-Abl. Cell 108, 247–259 (2002).

    Article  CAS  Google Scholar 

  18. Wang, J.Y.J. Negative regulation of c-abl tyrosine kinase by its variable N-terminal amino acids. Oncogene Res. 3, 293–298 (1988).

    CAS  PubMed  Google Scholar 

  19. Plattner, R. et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1. Nature Cell Biol. 5, 309–319 (2003).

    Article  CAS  Google Scholar 

  20. Wang, J.Y. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr. Opin. Genet. Dev. 3, 35–43 (1993).

    Article  CAS  Google Scholar 

  21. Wen, S.T. & Van Etten, R.A. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev. 11, 2456–2467 (1997).

    Article  CAS  Google Scholar 

  22. Wood, Z.A., Schroder, E., Robin Harris, J. & Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003).

    Article  CAS  Google Scholar 

  23. Welch, P.J. & Wang, J.Y. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–90 (1993).

    Article  CAS  Google Scholar 

  24. Woodring, P.J., Hunter, T. & Wang, J.Y. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J. Biol. Chem. 276, 27104–27110 (2001).

    Article  CAS  Google Scholar 

  25. Darnell, G.A. et al. Inhibition of retinoblastoma protein degradation by interaction with the serpin PAI-2 via a novel consensus motif. Mol. Cell. Biol. 23, 6520–6532 (2003).

    Article  CAS  Google Scholar 

  26. Woodring, P.J. et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J. Cell Biol. 156, 879–892 (2002).

    Article  CAS  Google Scholar 

  27. Smith, K.M., Yacobi, R. & Van Etten, R.A. Autoinhibition of Bcr-Abl through its SH3 domain. Mol. Cell 12, 27–37 (2003).

    Article  CAS  Google Scholar 

  28. Plattner, R., Kadlec, L., DeMali, K.A., Kazlauskas, A. & Pendergast, A.M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  Google Scholar 

  29. Foray, N. et al. Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol. Cell Biol. 22, 4020–4032 (2002).

    Article  CAS  Google Scholar 

  30. Yarden, R.I. & Brody, L.C. BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 4983–4988 (1999).

    Article  CAS  Google Scholar 

  31. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Baskaran, R. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387, 516–519 (1997).

    Article  CAS  Google Scholar 

  33. Cong, F. et al. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol. Cell 6, 1413–1423 (2000).

    Article  CAS  Google Scholar 

  34. Echarri, A. & Pendergast, A.M. Activated c-Abl is degraded by the ubiquitin-dependent proteasome pathway. Curr. Biol. 11, 1759–1765 (2001).

    Article  CAS  Google Scholar 

  35. Kipreos, E.T. & Wang, J.Y. Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity. Science 248, 217–220 (1990).

    Article  CAS  Google Scholar 

  36. Barila, D. et al. Caspase-dependent cleavage of c-Abl contributes to apoptosis. Mol. Cell. Biol. 23, 2790–2799 (2003).

    Article  CAS  Google Scholar 

  37. Hirotsu, S. et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl Acad. Sci. USA 96, 12333–12338 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank J. Zhu at the La Jolla Scientific Management for the artwork. I owe this perspective to the many talented investigators who have worked on Abl in my lab and around the world. Many worthy citations are omitted from this article solely because of page limits. Our work on Abl has been supported by the National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J. Controlling Abl: auto-inhibition and co-inhibition?. Nat Cell Biol 6, 3–7 (2004). https://doi.org/10.1038/ncb0104-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0104-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing