Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technology Review
  • Published:

Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins

Abstract

Since its introduction into heterologous organisms as a marker of gene expression, the green fluorescent protein (GFP) has led a dramatic revolution in cell, developmental and neurobiology. By allowing breathtaking visualization of fluorescent fusion proteins as they move within and between cells, GFP has fundamentally transformed the spatial analysis of protein function. Now, new GFP technologies allow far more than simple observations of fusion protein localization. The growing family of fluorescent protein variants is enabling more sophisticated studies of protein function and illuminating wide-ranging processes from gene expression to second-messenger cascades and intercellular signalling. Together with advances in microscopy, new GFP-based experimental approaches are forging a second GFP revolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two approaches for monitoring gene-expression kinetics by using fluorescent proteins:
Figure 2: Principles of fluorescence resonance energy transfer with fluorescent proteins

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Patterson, G., Day, R. & Piston, D. Fluorescent protein spectra. J. Cell Sci. 114, 837–838 (2001).

    CAS  PubMed  Google Scholar 

  4. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  5. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Biochemistry, mutagenesis and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizzuto, R. et al. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 6, 183–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Ellenberg, J., Lippincott-Schwartz, J. & Presley, J. F. Two-color green fluorescent protein time-lapse imaging. Biotechniques 25, 838–842, 844–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Falk, M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci. 113, 4109–4120 (2000).

    CAS  PubMed  Google Scholar 

  9. Miller, D. M. 3rd et al. Two-color GFP expression system for C. elegans. Biotechniques 26, 914–918, 920–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hawley, T. S., Telford, W. G. & Hawley, R. G. 'Rainbow' reporters for multispectral marking and lineage analysis of hematopoietic stem cells. Stem Cells 19, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tsukamoto, T. et al. Visualization of gene activity in living cells. Nature Cell Biol. 2, 871–878 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000).

    Article  CAS  Google Scholar 

  15. Terskikh, A. et al. 'Fluorescent timer': protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M. & Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Litman, P., Amieva, M. R. & Furthmayr, H. Imaging of dynamic changes of the actin cytoskeleton in microextensions of live NIH3T3 cells with a GFP fusion of the F-actin binding domain of Moesin. BMC Cell Biol. 1, 1 (2000), (http://www.biomedcentral.com/1471-2121/1/1/)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Murray, M. J., Merritt, D. J., Brand, A. H. & Whitington, P. M. In vivo dynamics of axon pathfinding in the Drosophila CNS: a time-lapse study of an identified motor neuron. J. Neurobiol. 37, 607–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Nonet, M. L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein–GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Estes, P. S., Ho, G. L., Narayanan, R. & Ramaswami, M. Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin—green fluorescent protein chimera in vivo. J. Neurogenet. 13, 233–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Wacker, I. et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J. Cell Sci. 110, 1453–1463 (1997).

    CAS  PubMed  Google Scholar 

  27. El Meskini, R. et al. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142, 864–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez, C. & Bejarano, L. A. Protein traps: using intracellular localization for cloning. Trends Cell Biol. 10, 162–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Beach, D. L., Salmon, E. D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Patterson, G. H., Piston, D. W. & Barisas, B. G. Forster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Majoul, I., Straub, M., Hell, S. W., Duden, R. & Söling, H.-D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell 1, 139–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. De Angelis, D. A., Miesenbock, G., Zemelman, B. V. & Rothman, J. E. PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Natl. Acad. Sci. USA 95, 12312–12316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gordon, G. W., Berry, G., Liang, X. H., Levine, B. & Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gadella, T. W. J. J., Jovin, T. M. & Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM)—spatial resolution of microstructures on the nanosecond time-scale. Biophys. Chem. 48, 221–239 (1993).

    Article  CAS  Google Scholar 

  46. Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Wouters, F. S. & Bastiaens, P. I. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9, 1127–1130 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Baubet, V. et al. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc. Natl. Acad. Sci. USA 97, 7260–7265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved CAMeleons. Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Emmanouilidou, E. et al. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted CAMeleon. Curr. Biol. 9, 915–918 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Allen, G. J. et al. CAMeleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 95, 6803–6808 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kneen, M., Farinas, J., Li, Y. & Verkman, A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Yuste, R., Miller, R. B., Holthoff, K., Zhang, S. & Miesenbock, G. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol. 327, 522–546 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Kuner, T. & Augustine, G. J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagai, T., Sawano, A., Park, E. S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001).

    Article  CAS  Google Scholar 

  66. Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nature Biotechnol. 18, 313–316 (2000).

    Article  CAS  Google Scholar 

  67. Sato, M., Hida, N., Ozawa, T. & Umezawa, Y. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal. Chem. 72, 5918–5924 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. USA 98, 2437–2442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Vanderklish, P. W. et al. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 97, 2253–2258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo, K. Q., Yu, V. C., Pu, Y. & Chang, D. C. Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem. Biophys. Res. Commun. 283, 1054–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–1419 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Day, R. N., Periasamy, A. & Schaufele, F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25, 4–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol. 2, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Falk, M. M. & Lauf, U. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP and YFP to study the structural composition of gap junctions in living cells. Microsc. Res. Tech. 52, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Straub, M., Lodemann, P., Holroyd, P., Jahn, R. & Hell, S. W. Live cell imaging by multifocal multiphoton microscopy. Eur. J. Cell Biol. 79, 726–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Khatchatouriants, A., Lewis, A., Rothman, Z., Loew, L. & Treinin, M. GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans. Biophys. J. 79, 2345–2352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sakai, R., Repunte-Canonigo, V., Raj, C. D. & Knopfel, T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13, 2314–2318 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Tsien, R. Lansford and S. Fraser for access to preprint publications, and J. Haseloff for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea H. Brand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Roessel, P., Brand, A. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4, E15–E20 (2002). https://doi.org/10.1038/ncb0102-e15

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0102-e15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing