Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-step control of spindle pole body duplication by cyclin-dependent kinase

Abstract

Organelles called centrosomes in metazoans or spindle pole bodies (SPBs) in yeast direct the assembly of a bipolar spindle that is essential for faithful segregation of chromosomes during mitosis. Abnormal accumulation of multiple centrosomes leads to genome instability, and has been observed in both tumour cells and cells with targeted mutations in tumour-suppressor genes. The defects that lead to centrosome amplification are not understood. We have recapitulated the multiple-centrosome phenotype in budding yeast by disrupting the activity of specific cyclin-dependent kinase (CDK) complexes. Our observations are reminiscent of mechanisms that govern DNA replication, and show that specific cyclin/CDK activities function both to promote SPB duplication and to prevent SPB reduplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of clb deletion strains expressing GFP-tagged SPB.
Figure 2: SPB reduplication in strains constitutively overexpressing a hyperstable allele of Cln2 (Cln2*).
Figure 3: Mitotic Clbs inhibit SPB reduplication.
Figure 4: A pulse of mitotic Clb/CDK activity can drive SPB separation and reduplication.
Figure 5: Summary of the results.

Similar content being viewed by others

References

  1. Carroll, P. E. et al. Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18, 1935–1944 ( 1999).

    Article  CAS  Google Scholar 

  2. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande, W. G. Abnormal centrosome amplification in the absence of p53. Science 271, 1744– 1747 (1996).

    Article  CAS  Google Scholar 

  3. Xu, X. et al. Centrosome amplification and a defective G2–M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells . Mol Cell 3, 389–395 (1999).

    Article  CAS  Google Scholar 

  4. Vidwans, S. J., Wong, M. L. & O'Farrell, P. H. Mitotic regulators govern progress through steps in the centrosome duplication cycle. J. Cell Biol. 147, 1371–1378 (1999).

    Article  CAS  Google Scholar 

  5. Matsumoto, Y., Hayashi, K. & Nishida, E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432 (1999).

    Article  CAS  Google Scholar 

  6. Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2–cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts . Science 283, 851–854 (1999).

    Article  CAS  Google Scholar 

  7. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication . Proc. Natl Acad. Sci. USA 96, 2817– 2822 (1999).

    Article  CAS  Google Scholar 

  8. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–cyclin A. Nature Cell Biol. 1, 88–93 (1999).

    Article  CAS  Google Scholar 

  9. Dahmann, C., Diffley, J. F. & Nasmyth, K. A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257– 1269 (1995).

    Article  CAS  Google Scholar 

  10. Haase, S. B. & Reed, S. I. Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401, 394–397 ( 1999).

    CAS  PubMed  Google Scholar 

  11. Follette, P. J., Duronio, R. J. & O'Farrell, P. H. Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Curr. Biol. 8, 235–238 ( 1998).

    Article  CAS  Google Scholar 

  12. Weiss, A., Herzig, A., Jacobs, H. & Lehner, C. F. Continuous cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr. Biol. 8, 239 –242 (1998).

    Article  CAS  Google Scholar 

  13. Adams, I. R. & Kilmartin, J. V. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145, 809– 823 (1999).

    Article  CAS  Google Scholar 

  14. Song, S., Grenfell, T. Z., Garfield, S., Erikson, R. L. & Lee, K. S. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell. Biol. 20, 286– 298 (2000).

    Article  CAS  Google Scholar 

  15. Fitch, I. et al. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol Cell. 3, 805–818 (1992).

    Article  CAS  Google Scholar 

  16. Basco, R. D., Segal, M. D. & Reed, S. I. Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 5030–5042 (1995).

    Article  CAS  Google Scholar 

  17. Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271, 1597– 1601 (1996).

    Article  CAS  Google Scholar 

  18. Sorger, P. K. & Murray, A. W. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 355, 365– 368 (1992).

    Article  CAS  Google Scholar 

  19. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  20. Richardson, H., Lew, D. J., Henze, M., Sugimoto, K. & Reed, S. I. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6, 2021–2034 ( 1992).

    Article  CAS  Google Scholar 

  21. Ghiara, J. B. et al. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65, 163–174 ( 1991).

    Article  CAS  Google Scholar 

  22. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 ( 1993).

    Article  CAS  Google Scholar 

  23. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455 –460 (1997).

    Article  CAS  Google Scholar 

  24. Noton, E. & Diffley, J. F. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000).

    Article  CAS  Google Scholar 

  25. Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329–335 ( 2000).

    Article  CAS  Google Scholar 

  26. Byers, B. & Goetsch, L. Preparation of yeast cells for thin-section electron microscopy. Methods Enzymol. 194, 602–608 (1991).

    Article  CAS  Google Scholar 

  27. Wittenberg, C., Sugimoto, K. & Reed, S. I. G1-specific cyclins of S. cerevisiae : cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62, 225–237 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Adams for the Spc42–GFP construct pIA29, and J. Kilmartin for initial electron-microscopic observations. We also thank M. Watson, N. Rhind, T. T. Su and M. Morris for critical reviewing of the manuscript, M. Wolff for technical assistance, and M. Wood, A. Sanusi and T. H. Giddings Jr for electron-microscopic work. This work was supported by NIH grant nos GM38328 (to S.I.R.) and GM51312 (to M.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven I. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, S., Winey, M. & Reed, S. Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 3, 38–42 (2001). https://doi.org/10.1038/35050543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing