Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent

Abstract

Here we report the use of fluorescence recovery after photobleaching (FRAP) to examine the intranuclear dynamics of fluorescent oestrogen receptor-α (ER). After bleaching, unliganded ER exhibits high mobility (recovery t1/2 < 1 s). Agonist (oestradiol; E2) or partial antagonist (4-hydroxytamoxifen) slows ER recovery (t1/2 5–6 s), whereas the pure antagonist (ICI 182,780) and, surprisingly, proteasome inhibitors each immobilize ER to the nuclear matrix. Dual FRAP experiments show that fluorescent ER and SRC-1 exhibit similar dynamics only in the presence of E2. In contrast to reports that several nuclear proteins show uniform dynamics, ER exhibits differential mobility depending upon several factors that are linked to its transcription function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CFP–ER and YFP–SRC-1.
Figure 2: FRAP analysis of ER following ligand treatment.
Figure 3: Dual FRAP analysis of ER and SRC-1.
Figure 4: Western blots of ER turnover and nuclear-matrix association.
Figure 5: Effects of proteasome inhibition, actinomycin D and ATP depletion on ER dynamics.
Figure 6: Helix 12 is required for ER immobilization.

Similar content being viewed by others

References

  1. Tsai, M. J. & O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63, 451–486 (1994).

    Article  CAS  Google Scholar 

  2. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  3. Beato, M., Chavez, S. & Truss M. Transcriptional regulation by steroid hormones. Steroids 61, 240–251 (1996).

    Article  CAS  Google Scholar 

  4. Htun, H., Holth, L. T., Walker, D., Davie, J. R. & Hager, G. L. Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol. Biol. Cell 10, 471–486 (1999).

    Article  CAS  Google Scholar 

  5. Stenoien, D. L. et al. Subnuclear trafficking of estrogen receptor-α and steroid receptor coactivator-1. Mol. Endocrinol. 14, 518–534 (2000).

    CAS  PubMed  Google Scholar 

  6. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    Article  CAS  Google Scholar 

  7. Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  CAS  Google Scholar 

  8. Jenster, G. et al. Steroid receptor induction of gene transcription: a two-step model. Proc. Natl Acad. Sci. USA 94, 7879–7884 (1997).

    Article  CAS  Google Scholar 

  9. McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20, 321–344 (1999).

    CAS  PubMed  Google Scholar 

  10. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  Google Scholar 

  11. Mak, H. Y., Hoare, S., Henttu, P. M. & Parker, M. G. Molecular determinants of the estrogen receptor-coactivator interface. Mol. Cell. Biol. 19, 3895–3903 (1999).

    Article  CAS  Google Scholar 

  12. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  CAS  Google Scholar 

  13. Feng, W. et al. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280, 1747–1749 (1998).

    Article  CAS  Google Scholar 

  14. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  15. Nawaz, Z. et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 19, 1182–1189 (1999).

    Article  CAS  Google Scholar 

  16. Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A. & Moore, D. D. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374, 91–94 (1995).

    Article  CAS  Google Scholar 

  17. Rubin, D. M. et al. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379, 655–657 (1996).

    Article  CAS  Google Scholar 

  18. Jensen, E. V., Suzuki, T., Numata, M., Smith, S. & DeSombre, E. R. Estrogen binding substances of target tissues. Steroids 13, 417–427 (1969).

    Article  CAS  Google Scholar 

  19. Eckert, R. L., Mullick, A., Rorke, E. A., & Katzenellenbogan, B. S. Estrogen receptor synthesis and turnover in MCF-7 breast cancer cells measured by a density shift technique. Endocrinol. 114, 629–637 (1984).

    Article  CAS  Google Scholar 

  20. Scholl, S. & Lippman, M. E. The estrogen receptor in MCF-7 cells: evidence from dense amino acid labeling for rapid turnover and a dimeric model of activated nuclear receptor. Endocrinol. 115, 1295–1301 (1984).

    Article  CAS  Google Scholar 

  21. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L. & O'Malley, B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl Acad. Sci. USA 96, 1858–1862 (1999).

    Article  CAS  Google Scholar 

  22. El Khissiin, A. & Leclercq, G. Implication of proteasome in estrogen receptor degradation. FEBS Lett. 448, 160–166 (1999).

    Article  CAS  Google Scholar 

  23. Alarid, E. T., Bakopoulos, N. & Solodin, N. Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol. Endocrinol. 13, 1522–1534 (1999).

    Article  CAS  Google Scholar 

  24. Lonard, D. M., Nawaz, Z., Smith, C. L. & O'Malley, B. W. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5, 939–948 (2000).

    Article  CAS  Google Scholar 

  25. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  26. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  Google Scholar 

  27. Kruhlak, M. J. et al. Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J. Cell Biol. 150, 41–51 (2000).

    Article  CAS  Google Scholar 

  28. Ellenberg, J. & Lippincott-Schwartz, J. Dynamics and mobility of nuclear envelope proteins in interphase and mitotic cells revealed by green fluorescent protein chimeras. Methods 19, 362–372 (1999).

    Article  CAS  Google Scholar 

  29. Horwitz, K. B. & McGuire, W. L. Actinomycin D prevents nuclear processing of estrogen receptor. J. Biol. Chem. 253, 6319–6322 (1978).

    CAS  PubMed  Google Scholar 

  30. Borras, M. et al. Estradiol-induced down-regulation of estrogen receptor. Effect of various modulators of protein synthesis and expression. J. Steroid. Biochem. Mol. Biol. 48, 325–336 (1994).

    Article  CAS  Google Scholar 

  31. Nickerson, J. A., Krockmalnic, G., Wan, K. M. & Penman, S. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc. Natl Acad. Sci. USA 94, 4446–4450 (1997).

    Article  CAS  Google Scholar 

  32. De Conto, F. et al. In mouse myoblasts nuclear prosomes are associated with the nuclear matrix and accumulate preferentially in the perinucleolar areas. J. Cell Sci. 113, 2399–2407 (2000).

    CAS  PubMed  Google Scholar 

  33. Tokumoto, M., Yamaguchi, A., Nagahama, Y. & Tokumoto, T. Identification of the goldfish 20S proteasome β6 subunit bound to nuclear matrix. FEBS Lett. 472, 62–66 (2000).

    Article  CAS  Google Scholar 

  34. Fawell, S. E., Lees, J. A., White, R. & Parker, M. G. Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60, 953–962 (1990).

    Article  CAS  Google Scholar 

  35. Smith, C. L., Nawaz, Z. & O'Malley, B. W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666 (1997).

    Article  CAS  Google Scholar 

  36. Grese, T. A. et al. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc. Natl Acad. Sci. USA 94, 14105–14110 (1997).

    Article  CAS  Google Scholar 

  37. Dauvois, S., White, R. & Parker, M. G. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell. Sci. 106, 1377–1378 (1993).

    CAS  PubMed  Google Scholar 

  38. Devin-Leclerc, J. et al. Interaction and dissociation of estrogen receptor and Hsp90: the antiestrogen RU 58668 induces a protein synthesis dependent clustering of the receptor in the cytoplasm. Mol. Endocrinol. 12, 842–854 (1998).

    Article  CAS  Google Scholar 

  39. Pederson, T. Diffusional protein transport within the nucleus: a message in the medium. Nature Cell Biol. 2, E73–E74 (2000).

    Article  CAS  Google Scholar 

  40. Lewis, J. D. & Tollervey, D. Like attracts like: getting RNA processing together in the nucleus. Science 288, 1385–1389 (2000).

    Article  CAS  Google Scholar 

  41. Shopland, S. L. & Lawrence, J. B. Seeking common ground in nuclear complexity. J. Cell Biol. 150, F1–F4 (2000).

    Article  CAS  Google Scholar 

  42. McKenna, N. J., Nawaz, Z., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc. Natl Acad. Sci. USA 95, 11697–11702 (1998).

    Article  CAS  Google Scholar 

  43. Seksek, O., Biwersi, J. & Verkman, A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol. 138, 131–142 (1997).

    Article  CAS  Google Scholar 

  44. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  45. Tang, Y. & DeFranco, D. B. ATP-dependent release of glucocorticoid receptors from the nuclear matrix. Mol. Cell. Biol. 16, 1989–2001 (1996).

    Article  CAS  Google Scholar 

  46. Hu, L. M., Bodwell, J., Hu, J. M., Orti, E. & Munck, A. Glucocorticoid receptors in ATP-depleted cell. Dephosphorylation, loss of hormone binding, HSP90 dissociation, and ATP-dependent cycling. J. Biol. Chem. 269, 6571–6577 (1994).

    CAS  PubMed  Google Scholar 

  47. Stenoien, D. L. et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8, 731–741 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nickerson, A. Belmont, Z. D. Sharp and D. DeFranco for critical reviews of the manuscript, E. Schwoebel and M. S. Moore for assistance with ATP-depletion experiments, and A. Cooney and Z. Nawaz for discussions. This work was supported by NIH grant RO1 DK55622 and a National American Heart Association Scientist Development Award (9630033N) to M.A.M., an NIH postdoctoral fellowship (1F32DK09787) to D.L.S., NIH grant RO1 DK53002 to C.L.S., and funding from the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Mancini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenoien, D., Patel, K., Mancini, M. et al. FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent. Nat Cell Biol 3, 15–23 (2001). https://doi.org/10.1038/35050515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing