Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor

Abstract

Mass spectrometry (MS) analysis is applicable to a broad range of biological analytes and has the important advantage that it does not require analytes to be labeled. A drawback of MS methods, however, is the need for chromatographic steps to prepare the analyte, precluding MS from being used in chemical screening and rapid analysis. Here, we report that surfaces that are chemically tailored for characterization by matrix-assisted laser-desorption ionization time-of-flight MS eliminate the need for sample processing and make this technique adaptable to parallel screening experiments. The tailored substrates are based on self-assembled monolayers that present ligands that interact with target proteins and enzymes. We apply this method to screen a chemical library against protease activity of anthrax lethal factor, and report a compound that inhibits lethal factor activity with a Ki of 1.1 μM and blocks the cleavage of MEK1 in 293 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAMDI-based screen for lethal factor toxin.
Figure 2: Dose-response curve from the SAMDI assay.
Figure 3: Kinetic characterization of DS-998.
Figure 4: Activity of DS-998 in cellular assays.
Figure 5: Inhibition of lethal factor–induced macrophage death by DS-998.
Figure 6: Z′-factor for the SAMDI assay.

Similar content being viewed by others

References

  1. Cacace, A., Banks, M., Spicer, T., Civoli, F. & Watson, J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov. Today 8, 785–792 (2003).

    Article  CAS  Google Scholar 

  2. Khandurina, J. & Guttman, A. Microchip-based high-throughput screening analysis of combinatorial libraries. Curr. Opin. Chem. Biol. 6, 359–366 (2002).

    Article  CAS  Google Scholar 

  3. Stockwell, B.R., Haggarty, S.J. & Schreiber, S.L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83 (1999).

    Article  CAS  Google Scholar 

  4. Shogren-Knaak, M., Alaimo, P.J. & Shokat, K.M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17, 405–433 (2001).

    Article  CAS  Google Scholar 

  5. Kuruvilla, F.G., Shamji, A.F., Sternson, S.M., Hergenrother, P.J. & Schreiber, S.L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    Article  CAS  Google Scholar 

  6. Guo, Z., Zhou, D. & Schultz, P.G. Designing small-molecule switches for protein-protein interactions. Science 288, 2042–2045 (2000).

    Article  CAS  Google Scholar 

  7. Tawa, P., Tam, J., Cassady, R., Nicholson, D.W. & Xanthoudakis, S. Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ. 8, 30–37 (2001).

    Article  CAS  Google Scholar 

  8. Fowler, A. et al. An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal. Biochem. 308, 223–231 (2002).

    Article  CAS  Google Scholar 

  9. Parker, G.J., Law, T.L., Lenoch, F.J. & Bolger, R.E. Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays. J. Biomol. Screen. 5, 77–88 (2000).

    Article  CAS  Google Scholar 

  10. Levine, L.M., Michener, M.L., Toth, M.V. & Holwerda, B.C. Measurement of specific protease activity utilizing fluorescence polarization. Anal. Biochem. 247, 83–88 (1997).

    Article  CAS  Google Scholar 

  11. Salisbury, C.M., Maly, D.J. & Ellman, J.A. Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Soc. 124, 14868–14870 (2002).

    Article  CAS  Google Scholar 

  12. Dixon, T.C., Meselson, M., Guillemin, J. & Hanna, P.C. Anthrax. N. Engl. J. Med. 341, 815–826 (1999).

    Article  CAS  Google Scholar 

  13. Inglesby, T.V. et al. Anthrax as a biological weapon: medical and public health management. Working group on civilian biodefense. JAMA 281, 1735–1745 (1999).

    Article  CAS  Google Scholar 

  14. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H. & Liddington, R.C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  Google Scholar 

  15. Bradley, K.A., Mogridge, J., Mourez, M., Collier, R.J. & Young, J.A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001).

    Article  CAS  Google Scholar 

  16. Varughese, M., Teixeira, A.V., Liu, S. & Leppla, S.H. Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect. Immun. 67, 1860–1865 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Drum, C.L. et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415, 396–402 (2002).

    Article  CAS  Google Scholar 

  18. Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M. & Montecucco, C. Lethal factor of Bacillus anthracis cleaves the N-terminus of MAPKKs: analysis of the intracellular consequences in macrophages. Int. J. Med. Microbiol. 290, 421–427 (2000).

    Article  CAS  Google Scholar 

  19. Duesbery, N.S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  Google Scholar 

  20. Vitale, G., Bernardi, L., Napolitani, G., Mock, M. & Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 352, 739–745 (2000).

    Article  CAS  Google Scholar 

  21. Pannifer, A.D. et al. Crystal structure of the anthrax lethal factor. Nature 414, 229–233 (2001).

    Article  CAS  Google Scholar 

  22. Friedlander, A.M. Tackling anthrax. Nature 414, 160–161 (2001).

    Article  CAS  Google Scholar 

  23. Tonello, F., Seveso, M., Marin, O., Mock, M. & Montecucco, C. Screening inhibitors of anthrax lethal factor. Nature 418, 386 (2002).

    Article  CAS  Google Scholar 

  24. Houseman, B.T., Huh, J.H., Kron, S.J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274 (2002).

    Article  CAS  Google Scholar 

  25. Houseman, B.T., Gawalt, E.S. & Mrksich, M. Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19, 1522–1531 (2003).

    Article  CAS  Google Scholar 

  26. Cummings, R.T. et al. A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc. Natl. Acad. Sci. USA 99, 6603–6606 (2002).

    Article  CAS  Google Scholar 

  27. Sigal, G.B., Mrksich, M. & Whitesides, G.M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 3464–3473 (1998).

    Article  CAS  Google Scholar 

  28. Mrksich, M. & Whitesides, G.M. Using self-assembled monolayers that present oligo(ethylene glycol) groups to control the interactions of proteins with surfaces. Am. Chem. Soc. Symp. Ser. 680, 361–373 (1997).

    CAS  Google Scholar 

  29. Trevor, J.L., Lykke, K.R., Pellin, M.J. & Hanley, L. Two-laser mass spectrometry of thiolate, disulfide, and sulfide self-assembled monolayers. Langmuir 14, 1664–1673 (1998).

    Article  CAS  Google Scholar 

  30. Su, J. & Mrksich, M. Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew. Chem. Int. Ed. Engl. 41, 4715–4718 (2002).

    Article  CAS  Google Scholar 

  31. Koo, H.M. et al. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl. Acad. Sci. USA 99, 3052–3057 (2002).

    Article  CAS  Google Scholar 

  32. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  Google Scholar 

  33. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  Google Scholar 

  34. Houseman, B.T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  Google Scholar 

  35. Moy, F.J. et al. MS/NMR: a structure-based approach for discovering protein ligands and for drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Anal. Chem. 73, 571–581 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, the Ludwig Fund for Cancer Research and a Burroughs Wellcome Graduate Fellowship to D.-H.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Mrksich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, DH., Tang, WJ. & Mrksich, M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nat Biotechnol 22, 717–723 (2004). https://doi.org/10.1038/nbt973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing