Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells

Abstract

The tRNA endonuclease from the archaebacterium Methanococcus jannaschii (MJ endonuclease) can cleave RNAs forming specific bulge-helix-bulge (BHB) structures recognized by the enzyme1. The resulting cleavage products are subsequently joined together by an endogenous ligase. We demonstrate the potential of using this strategy for repairing RNA in higher organisms by expressing the enzyme in mouse cells. Reporter target mRNAs modified with 17-nucleotide introns, flanked by sequences capable of forming BHB structures in cis, were expressed in mouse cells. RNA molecules that can form BHB substrates in trans with targeted mRNAs were also designed. Co-transfection of mouse cells with plasmids expressing these RNAs and the MJ endonuclease led to formation of RNA chimeras in which the target and exogenous RNA were recombined across the BHB. This technology is not limited to mRNA, but could in principle be used to destroy, modify or restore the function of a vast repertoire of RNA species or to join selectable tags to target RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of BHB insertions in reporter mRNAs.
Figure 2
Figure 3: Repair of a defective firefly luciferase mRNA by BHB-mediated trans-splicing.
Figure 4: Production of a Crat-EGFP mRNA by BHB-mediated trans-splicing.

Similar content being viewed by others

References

  1. Abelson, J., Trotta, C.R. & Li, H. tRNA splicing. J. Biol. Chem. 273, 12685–12688 (1998).

    Article  CAS  Google Scholar 

  2. Moore, M.J. et al. The RNA World (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993).

    Google Scholar 

  3. Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002).

    Article  CAS  Google Scholar 

  4. Dahlberg, J.E., Lund, E. & Goodwin, E.B. Nuclear translation: what is the evidence? RNA 9, 1–8 (2003).

    Article  CAS  Google Scholar 

  5. Gonzalez, T.N., Sidrauski, C., Dorfler, S. & Walter, P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 18, 3119–3132 (1999).

    Article  CAS  Google Scholar 

  6. Sidrauski, C., Cox, J.S. & Walter, P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405–413 (1996).

    Article  CAS  Google Scholar 

  7. Thompson, L.D. & Daniels, C.J. Recognition of exon-intron boundaries by the Halobacterium volcanii tRNA intron endonuclease. J. Biol. Chem. 265, 18104–18111 (1990).

    CAS  PubMed  Google Scholar 

  8. Lykke-Andersen, J. & Garrett, R.A. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. J. Mol. Biol. 243, 846–855 (1994).

    Article  CAS  Google Scholar 

  9. Diener, J.L. & Moore, P.B. Solution structure of a substrate for the archaeal pre-tRNA splicing endonucleases: the bulge-helix-bulge motif. Mol. Cell. 1, 883–894 (1998).

    Article  CAS  Google Scholar 

  10. Li, H., Trotta, C.R. & Abelson, J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science 280, 279–284 (1998).

    Article  CAS  Google Scholar 

  11. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  12. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87, 8301–8305 (1990).

    Article  CAS  Google Scholar 

  13. Filipowicz, W., Konarska, M., Gross, H.J. & Shatkin, A.J. RNA 3′-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res. 11, 1405–1418 (1983).

    Article  CAS  Google Scholar 

  14. Perkins, K.K., Furneaux, H. & Hurwitz, J. Isolation and characterization of an RNA ligase from HeLa cells. Proc. Natl. Acad. Sci. USA 82, 684–688 (1985).

    Article  CAS  Google Scholar 

  15. Phizicky, E.M., Schwartz, R.C. & Abelson, J. Saccharomyces cerevisiae tRNA ligase. Purification of the protein and isolation of the structural gene. J. Biol. Chem. 261, 2978–2986 (1986).

    CAS  PubMed  Google Scholar 

  16. Cox, J.S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    Article  CAS  Google Scholar 

  17. MacGregor, G.R. & Caskey, C.T. Construction of plasmids that express E. coli β-galactosidase in mammalian cells. Nucleic Acids Res. 17, 2365 (1989).

    Article  CAS  Google Scholar 

  18. Puttaraju, M., Jamison, S.F., Mansfield, S.G., Garcia-Blanco, M.A. & Mitchell, L.G. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat. Biotechnol. 17, 246–252 (1999).

    Article  CAS  Google Scholar 

  19. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo–derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  20. Medico, E., Gambarotta, G., Gentile, A., Comoglio, P.M. & Soriano, P. A gene trap vector system for identifying transcriptionally responsive genes. Nat. Biotechnol. 19, 579–582 (2001).

    Article  CAS  Google Scholar 

  21. Baron, U. & Bujard, H. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol. 327, 401–421 (2000).

    Article  CAS  Google Scholar 

  22. Spencer, D.M. et al. Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr. Biol. 6, 839–847 (1996).

    Article  CAS  Google Scholar 

  23. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  Google Scholar 

  24. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type–specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  25. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  Google Scholar 

  26. Wutz, A., Rasmussen, T.P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    Article  CAS  Google Scholar 

  27. Sleutels, F., Zwart, R. & Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.H. Haselkorn for continuous encouragement and help, E.P. Geiduschek, D. Schlessinger and J.E. Dahlberg for valuable comments, A. Ferrara for secretarial assistance and G. Di Franco for technical assistance. Financial support was provided by the Programma Biomolecole per la Salute Umana MURST-CNR, FIRB Progetto di Ricerca Negoziale MIUR, Progetto Genomica Funzionale MIUR-CNR, Progetto Strategico Tecnologie di base della post-genomica CNR, Progetto Strategico Biotecnologie MURST-CNR, Progetto Strategico Genetica Molecolare MURST and EUMORPHIA European Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauco P Tocchini-Valentini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deidda, G., Rossi, N. & Tocchini-Valentini, G. An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells. Nat Biotechnol 21, 1499–1504 (2003). https://doi.org/10.1038/nbt908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing