Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small-scale systems for in vivo drug delivery

Abstract

Recent developments in the application of micro- and nanosystems for drug administration include a diverse range of new materials and methods. New approaches include the on-demand activation of molecular interactions, novel diffusion-controlled delivery devices, nanostructured 'smart' surfaces and materials, and prospects for coupling drug delivery to sensors and implants. Micro- and nanotechnologies are enabling the design of novel methods such as radio-frequency addressing of individual molecules or the suppression of immune response to a release device. Current challenges include the need to balance the small scale of the devices with the quantities of drugs that are clinically necessary, the requirement for more stable sensor platforms, and the development of methods to evaluate these new materials and devices for safety and efficacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiwell silicon-based drug-release device.
Figure 2
Figure 3: Twelve-month-release leuprolide acetate implant, 4 mm in diameter by 45 mm long.
Figure 4: RF activation of DNA hybridization.
Figure 5: Tetrahedral amorphous carbon–coated bare-die implant, 5 mm × 5 mm × 0.5 mm thick.

Similar content being viewed by others

References

  1. Langer, R. New methods of drug delivery. Science 249, 1527–1533 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Reed, M.L. et al. Micromechanical devices for intravascular drug delivery. J. Pharm. Sci. 87, 1387–1394 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Dario, P., Carrozza, M.C., Benvenuto, A. & Menciassi, A. Micro-systems in biomedical applications. J. Micromech. Microeng. 10, 235–244 (2000).

    Article  CAS  Google Scholar 

  4. Polla, D.L. et al. Microdevices in medicine. Annu. Rev. Biomed. Eng. 2, 551–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Lavan, D.A., Lynn, D.M. & Langer, R. Moving smaller in drug discovery and delivery. Nat. Rev. Drug. Discov. 1, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Shawgo, R.S., Richards Grayson, A.C., Li, Y. & Cima, M.J. BioMEMS for drug delivery. Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002).

    Article  CAS  Google Scholar 

  7. Tao, S.L. & Desai, T.A. Microfabricated drug delivery systems: from particles to pores. Adv. Drug Deliv. Rev. 55, 315–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Saltzman, W.M. & Olbricht, W.L. Building drug delivery into tissue engineering. Nat. Rev. Drug Discov. 1, 177–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. McAllister, D.V., Allen, M.G. & Prausnitz, M.R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2, 289–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Santini, J.T. Jr., Cima, M.J. & Langer, R. A controlled-release microchip. Nature 397, 335–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Maillefer, D., Van Lintel, H., Rey-Mermet, G. & Hirschi, R. A high-performance silicon micropump for an implantable drug delivery system. in 12th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, Orlando, Florida, USA, Jan 17–21, 1999 541–546 (IEEE, New York, USA, 1999).

  12. Chen, H., Torchilin, V. & Langer, R. Lectin–bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Woodley, J. Bioadhesion: new possibilities for drug administration? Clin. Pharmacokinet. 40, 77–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Keegan, M.E., Whittum-Hudson, J.A. & Saltzman, M.W. Biomimetic design in microparticulate vaccines. Biomaterials 24, 4435–4443 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ito, Y., Hu, Z., Yoshikawa, Y., Murakami, M. & Takada, K. Oral bioadhesive patch system for the delivery of peptide/proteins. in Proceedings of the 26th International Symposium on Controlled Release of Bioactive Materials pp. 851–852 (Controlled Release Society, Minneapolis, Minnesota, USA, 1999).

  16. Shen, Z. & Mitragotri, S. Intestinal patches for oral drug delivery. Pharm. Res. 19, 391–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Tao, S.L., Lubeley, M.W. & Desai, T.A. Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. J. Control. Release 88, 215–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, H. & Langer, R. Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm. Res. 14, 537–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Borenstein, J.T., King, K.R., Terai, H. & Vacanti, J.P. Capillary formation in microfabricated polymer scaffolds. Mater. Res. Soc. Symp. Proc. 711, 163–168 (2002).

    CAS  Google Scholar 

  20. Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hansen, C.L., Skordalakes, E., Berger, J.M. & Quake, S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA 99, 16531–16536 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Xia, Y. & Whitesides, G.M. Soft lithography. Polym. Mater. Sci. Eng. 77, 596–598 (1997).

    CAS  Google Scholar 

  23. Quake, S.R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Ameer, G.A., Sheppard, B.J. & Langer, R. A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Manz, A. et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems. A look into next century's technology or just a fashionable craze? Trends Anal. Chem. 10, 144–149 (1991).

    Article  CAS  Google Scholar 

  26. Harrison, D.J., Manz, A., Fan, Z., Luedi, H. & Widmer, H.M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932 (1992).

    Article  CAS  Google Scholar 

  27. Goll, C. et al. Microvalves with bistable buckled polymer diaphragms. J. Micromech. Microeng. 6, 77–79 (1996).

    Article  CAS  Google Scholar 

  28. Schomburg, W.K., Buestgens, B., Fahrenberg, J. & Maas, D. Components for microfluidic handling modules. in Proceedings of μTAS '94: The 1st Workshop on Micro Total Analytical Systems (ed. Bergveld, P.) pp. 255–258 (Kluwer, Dordrecht, The Netherlands, 1995).

    Chapter  Google Scholar 

  29. Ohgawara, H., Hirotani, S., Miyazaki, J. & Teraoka, S. Membrane immunoisolation of a diffusion chamber for bioartificial pancreas. Artif. Organs 22, 788–794 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Colton, C.K. Implantable biohybrid artificial organs. Cell Transplant. 4, 415–436 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Desai, T.A., Chu, W.H., Tu, J., Shrewsbury, P. & Ferrari, M. Microfabricated biocapsules for cell xenografts: a review. Proc. SPIE 2978, 216–226 (1997).

    Article  CAS  Google Scholar 

  32. Desai, T.A. et al. Microfabricated immunoisolating biocapsules. Biotechnol. Bioeng. 57, 118–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Sefton, M.V., Horvath, V. & Zingg, W. Insulin delivery by a diffusion-controlled micropump in pancreatectomized dogs: phase 1. J. Control. Release 12, 1–12 (1990).

    Article  CAS  Google Scholar 

  34. Atkinson, L.E., Dunn, J.T., Gale, R.M. & Rivera, D.L. Segmented device for simultaneous delivery of multiple beneficial agents. US Patent 5443461 (1995).

  35. Hanas, R. Selection for and initiation of continuous subcutaneous insulin infusion. Horm. Res. 57, 101–104 (2002).

    CAS  PubMed  Google Scholar 

  36. Damascelli, B. et al. Circadian continuous chemotherapy of renal cell carcinoma with an implantable, programmable infusion pump. Cancer 66, 237–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, J.N., Miller, J.M., Altschuler, R.A. & Nuttall, A.L. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hearing Res. 70, 167–172 (1993).

    Article  CAS  Google Scholar 

  38. Gardner, B. et al. Intrathecal baclofen—a multicentre clinical comparison of the Medtronics Programmable, Cordis Secor and Constant Infusion Infusaid drug delivery systems. Paraplegia 33, 551–554 (1995).

    CAS  PubMed  Google Scholar 

  39. Blair, M.J. et al. Subconjunctivally implanted micro-osmotic pumps for continuous ocular treatment in horses. Am. J. Veter. Res. 60, 1102–1105 (1999).

    CAS  Google Scholar 

  40. Fisher, R.S. & Ho, J. Potential new methods for antiepileptic drug delivery. CNS Drugs 16, 579–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Diaz, S. et al. A five-year clinical trial of levonorgestrel silastic implants (Norplant tm). Contraception 25, 447–456 (1982).

    Article  CAS  PubMed  Google Scholar 

  42. Wright, J.C. et al. A one-year implantable, osmotic delivery system (Duros leuprolide implant) for the treatment of advanced prostate cancer. in Proceedings of the 24th International Symposium on Controlled Release of Bioactive Materials 59–60 (Controlled Release Society, Minneapolis, Minnesota, USA, 1997).

  43. Ohgawara, H. Strategies for immunoisolation in islet transplantation: challenges for the twenty-first century. J. Hepato-Biliary-Pancreatic Surg. 7, 374–379 (2000).

    Article  CAS  Google Scholar 

  44. Regulier, E., Schneider, B.L., Deglon, N., Beuzard, Y. & Aebischer, P. Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Ther. 5, 1014–1022 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Jolley, W.B., Hinshaw, D.B., Call, T.W. & Alvord, L.S. Xenogeneic pancreatic islet transplantation in proteolytic enzyme–bonded diffusion chambers in diabetic rats. Transplant. Proc. 9, 363–365 (1977).

    CAS  PubMed  Google Scholar 

  46. Desai, T.A. et al. Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed. Microdevices 1, 131–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Ogura, H. et al. Implantation of genetically manipulated fibroblasts into mice as antitumor. Alpha–interferon therapy. Cancer Res. 50, 5102–5106 (1990).

    CAS  PubMed  Google Scholar 

  48. Brauker, J.H., Geller, R.L., Johnston, W.D., Levon, S.A. & Maryanov, D.A. Implantation of tumor cells for the prevention and treatment of cancer. US Patent 6156305, Cont.-in-part of U.S. Ser. No. 272,189, abandoned (2000).

  49. Brauker, J., Martinson, L.A., Young, S.K. & Johnson, R.C. Local inflammatory response around diffusion chambers containing xenografts. Nonspecific destruction of tissues and decreased local vascularization. Transplantation 61, 1671–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Kuhtreiber, W.M., Lanza, R.P., Beyer, A.M., Kirkland, K.S. & Chick, W.L. Relationship between insulin secretion and oxygen tension in hybrid diffusion chambers. ASAIO J. 39, M247–M251 (1993).

    CAS  PubMed  Google Scholar 

  51. Vardi, P., Gross, Y., Bloch, K., Bloch, D. & Boukobza, N. Implantable device comprising oxygen generator. PCT International Application 0150983 (2001).

  52. Colton, C.K. & Swette, L.L. Method of delivering oxygen to cells by electrolyzing water. US Patent 6368592 (2002).

  53. Cohen, H. et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7, 1896–1905 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Merisko-Liversidge, E. et al. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 13, 272–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Gref, R. et al. Biodegradable long-circulating polymer nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Akerman, M.E., Chan, W.C.W., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo . Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Tkachenko Alexander, G. et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc. 125, 4700–4701 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Hallahan, D. et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3, 63–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Edwards, D.A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Edwards, D.A. & Dunbar, C. Bioengineering of therapeutic aerosols. Annu. Rev. Biomed. Eng. 4, 93–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Tsapis, N., Bennett, D., Jackson, B., Weitz, D.A. & Edwards, D.A. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA 99, 12001–12005 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Luo, D. & Saltzman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, N.S., Burkholder, J., Roberts, B., Martinell, B. & McCabe, D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 87, 9568–9572 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, W.F. Human gene therapy. Nature 392, 25–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Lynn, D.M., Amiji, M.M. & Langer, R. pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular ph. Angew. Chem. Int. Ed. Engl. 40, 1707–1710 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. De Jaeghere, F. et al. pH-dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS Pharm. Sci. 3, E8 (2001).

    Article  CAS  Google Scholar 

  67. Choi, J.S., Mackay, J.A. & Szoka, F.C. Jr. Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: preparation and characterization. Bioconj. Chem. 14, 420–429 (2003).

    Article  CAS  Google Scholar 

  68. Hwang, S.J. & Davis, M.E. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr. Opin. Mol. Ther. 3, 183–191 (2001).

    CAS  PubMed  Google Scholar 

  69. Anderson, D.G., Lynn, D.M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl. 42, 3153–3158 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, M., Rentz, J., Han, S.O., Bull, D.A. & Kim, S.W. Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther. 10, 585–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Affleck, D.G., Yu, L., Bull, D.A., Bailey, S.H. & Kim, S.W. Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system. Gene Ther. 8, 349–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Antibacterial detergent compositions containing heavy metal salts of 2-pyridinethione-1-oxide. British Patent 1111708 (1968).

  73. Kazama, T. & Irie, T. Microbicidal thermoplastic composites. Japanese Patent 03273040 (1991).

  74. Sasaki, S., Suzuki, K. & Okuma, S. Antibacterial cellulose microparticles. Japanese Patent 04122743 (1992).

  75. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. & Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002).

    Article  CAS  Google Scholar 

  76. Davenas, J., Thevenard, P., Philippe, F. & Arnaud, M.N. Surface implantation treatments to prevent infection complications in short term devices. Biomolec. Eng. 19, 263–268 (2002).

    Article  CAS  Google Scholar 

  77. Lee, H.J., Yeo, S.Y. & Jeong, S.H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 38, 2199–2204 (2003).

    Article  CAS  Google Scholar 

  78. Berger, T.J., Spadaro, J.A., Chapin, S.E. & Becker, R.O. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Chemother. 9, 357–358 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Modak, S.M. & Fox, C.L. Jr. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa . Biochem. Pharmacol. 22, 2391–2404 (1973).

    Article  CAS  PubMed  Google Scholar 

  80. Fox, C.L. Jr., Rappole, B. & Stanford, W. Control of pseudomonas infection in burns by silver sulfadiazine. Surg. Gynecol. Obstet. 128, 1021–1026 (1969).

    PubMed  Google Scholar 

  81. Starodub, M.E. & Trevors, J.T. Silver resistance in Escherichia coli r1. J. Med. Microbiol. 29, 101–110 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Chive, M., Nguyen, D.D. & Leroy, Y. Localized hyperthermia. Towards an atraumatic method of heat control based on microwave thermography (author's translation). Bull. Cancer 68, 293–294 (1981).

    CAS  PubMed  Google Scholar 

  83. Marchal, C. et al. Treatment of superficial cancerous tumors by hyperthermia induced by ultrasonics or microwaves. C. R. Seances Soc. Biol. Fil. 177, 358–367 (1983).

    CAS  PubMed  Google Scholar 

  84. Pouliquen, D. Magnetite-dextran nanocapsules: preparation and properties. Microspheres Microcapsules Liposomes 3, 495–523 (2001).

    Google Scholar 

  85. Lilly, M.B., Brezovich, I.A. & Atkinson, W.J. Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology 154, 243–244 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. Tucker, R.D., Huidobro, C., Larson, T. & Platz, C.E. Use of permanent interstitial temperature self-regulating rods for ablation of prostate cancer. J. Endourology 14, 511–517 (2000).

    Article  CAS  Google Scholar 

  87. Arshady, R. Radiolabeled and magnetic microparticles: Introduction and overview. Microspheres Microcapsules Liposomes 3, 1–37 (2001).

    Google Scholar 

  88. Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S. & Jacobson, J.M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Article  PubMed  Google Scholar 

  89. Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S. & Jacobson, J.M. Direct electronic control of biomolecular systems: using nanocrystals as antennas for regulation of biological activity. in Synthesis, Functional Properties and Applications of Nanostructures. Materials Research Society Symposium Proceedings vol. 676 (eds. Hahn, H.W., Feldheim, D.L., Kubiak, C.P., Tannenbaum, R. & Siegel, R.W.) (Materials Research Society, Warrendale, Pennsylvania, USA, 2001).

    Google Scholar 

  90. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, C., Stewart, R.J. & Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397, 417–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Nowak, A.P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kwon, I.C., Bae, Y.H. & Kim, S.W. Electrically erodible polymer gel for controlled release of drugs. Nature 354, 291–293 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Madou, M.J. & He, K.-Q. Exploitation of a novel artificial muscle for controlled drug delivery. Polym. Mater. Sci. Eng. 83, 495–497 (2000).

    CAS  Google Scholar 

  95. Heller, J. & Trescony, P.V. Controlled drug release by polymer dissolution. Ii: Enzyme-mediated delivery device. J. Pharmaceutical Sci. 68, 919–921 (1979).

    Article  CAS  Google Scholar 

  96. Abbott, S., Ralston, J., Reynolds, G. & Hayes, R. Reversible wettability of photoresponsive pyrimidine-coated surfaces. Langmuir 15, 8923–8928 (1999).

    Article  CAS  Google Scholar 

  97. Ichimura, K., Oh, S.-K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, S.-Y., Lin, Y.-Y. & Chen, K.-S. A thermoswitchable membrane for drug delivery. Drug Deliv. 2, 123–127 (1995).

    Article  CAS  Google Scholar 

  99. Chen, K.-S., Lin, Y.-Y. & Lin, S.-Y. Thermally on-off switching nylon membrane for controlling drug penetration. Drug Deliv. Syst. 11, 55–61 (1996).

    Article  CAS  Google Scholar 

  100. Okahata, S., Seki, T. & Yonemori, K. pH-sensitive nylon capsule membranes. Japanese Patent 61025633 (1986).

  101. Wilson, M.D. & Whitesides, G.M. The anthranilate amide of 'polyethylene carboxylic acid' shows an exceptionally large change with ph in its wettability by water. J. Am. Chem. Soc. 110, 8718–8719 (1988).

    Article  CAS  Google Scholar 

  102. Willner, I.I. & Katz, E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. Eng. 39, 1180–1218 (2000).

    Article  CAS  Google Scholar 

  103. Sweedler, J.V., Kuo, T.-C., Cannon, D., Bohn, P.W. & Shannon, M.A. Molecular gates for attoscale preparative separations. in Abstracts of Papers, 222nd American Chemical Society National Meeting, Chicago, Illinois, USA, August 26–30, 2001 ANYL-162 (American Chemical Society, Washington, DC, 2001).

  104. Cao, X., Lai, S. & Lee, L.J. Design of a self-regulated drug delivery device. Biomed. Microdevices 3, 109–117 (2001).

    Article  CAS  Google Scholar 

  105. Umamaheswari, R.B., Jain, P. & Jain, N.K. Hydrogel—a novel drug delivery system. Indian Drugs 39, 243–256 (2002).

    CAS  Google Scholar 

  106. Mohr, J.M., Schmitt, E.E. & Stewart, R.F. Pulsatile transdermal drug delivery, in Proceedings of the 19th International Symposium on Controlled Release of Bioactive Materials 377–378 (Controlled Release Society, 1992).

  107. Kwok, C.S.-K., Ratner, B.D., Mourad, P.D. & Crum, L.A. Polymer-based controlled-release drug delivery devices. US Patent 6444217 (2002).

  108. Tran, T.-N. Design of reversible 'smart' surfaces for biomedical and nanotechnological applications. Ph.D. Thesis, Massachusetts Institute of Technology (2003).

  109. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Nagakura, T., Ishihara, K., Furukawa, T., Masuda, K. & Tsuda, T. Auto-regulated osmotic pump for insulin therapy by sensing glucose concentration without energy supply. Sens. Actuators B Chem. B34, 229–233 (1996).

    Article  Google Scholar 

  111. Kerner, W. Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109, S341–S346 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Holmstrom, N., Nilsson, P., Carlsten, J. & Bowald, S. Long-term in vivo experience of an electrochemical sensor using the potential step technique for measurement of mixed venous oxygen pressure. Biosens. Bioelectron. 13, 1287–1295 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Mills, P.A. et al. A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry. J. Appl. Physiol. 88, 1537–1544 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Husak, M. One-chip integrated resonance circuit with a capacitive pressure sensor. J. Micromech. Microeng. 7, 173–178 (1997).

    Article  CAS  Google Scholar 

  115. English, J.M. & Allen, M.G. Wireless micromachined ceramic pressure sensors. in 12th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, Orlando, Florida, USA, January 17–21, 1999 377–378 (IEEE, Piscataway, New Jersey, USA, 1999).

  116. Schnakenberg, U. et al. Initial investigations on systems for measuring intraocular pressure. Sens. Actuators A Phys. A85, 287–291 (2000).

    Article  Google Scholar 

  117. Schnakenberg, U. et al. Transponder system for non-invasive measurement of intravascular pressure. Biomed. Tech. (Berl.) 47 (Suppl. 1 Pt. 1), 191–193 (2002).

    Article  Google Scholar 

  118. Dehennis, A. & Wise, K.D. A double-sided single-chip wireless pressure sensor. in 15th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, Las Vegas, Nevada, USA, January 20–24, 2002 252–255 (IEEE, Piscataway, New Jersey, USA, 2002).

  119. Schmitz-Rode, T. et al. Vascular capsule for telemetric monitoring of blood pressure. Rofo. Fortschr. Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 175, 282–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Allen, M.G. & English, J.M. System, method, and sensors for sensing physical properties. US Patent 6278379, Cont.-in-part of Ser. No. US 1998-54011, filed on 54012 Apr 51998, now (2001).

  121. Porat, Y., Penner, A. & Doron, E. Implantable acoustic biosensing system and method. US Patent 6432050 (2002).

  122. Mano, N., Mao, F. & Heller, A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588–6594 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Lambert, T.L. et al. Localized arterial wall drug delivery from a polymer-coated removable metallic stent: kinetics, distribution, and bioactivity of forskolin. Circulation 90, 1003–1011 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Lincoff, A.M., Furst, J.G., Ellis, S.G., Tuch, R.J. & Topol, E.J. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol. 29, 808–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Strecker, E.P. et al. Effect on intimal hyperplasia of dexamethasone released from coated metal stents compared with non-coated stents in canine femoral arteries. Cardiovasc. Intervent. Radiol. 21, 487–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Ahn, Y.K. et al. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter. Cardiovasc. Interv. 48, 324–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Grube, E. & Bullesfeld, L. Initial experience with paclitaxel-coated stents. J. Interv. Cardiol. 15, 471–475 (2002).

    Article  PubMed  Google Scholar 

  128. Sonoda, S. et al. Taxol-based eluting stents from theory to human validation: clinical and intravascular ultrasound observations. J. Invasive Cardiol. 15, 109–114 (2003).

    PubMed  Google Scholar 

  129. Renard, E., Costalat, G. & Bringer, J. From external to implantable insulin pump, can we close the loop? Diabetes Metab. 28, 2S19–12S25 (2002).

    CAS  PubMed  Google Scholar 

  130. Davis, S.D. et al. Biocompatibility of ceramic implants in soft tissue. J. Biomed. Mater. Res. 6, 425–449 (1972).

    Article  CAS  PubMed  Google Scholar 

  131. Herzog, V., Wolf, A., Glauche, R. & Rueckert, D. Coating of polymeric medical implants with silicon nitride or silicon oxide. East German Patent 282391 (1990).

  132. Desai, T.A., Ferrari, M. & Mazzoni, G. Silicon microimplants: fabrication and biocompatibility. Mater. Design Technol. 71, 97–103 (1995).

    CAS  Google Scholar 

  133. Hernandez, P.R. et al. Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation. Sens. Actuators B Chem. B46, 133–138 (1998).

    Article  Google Scholar 

  134. Hammerle, H. et al. Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23, 797–804 (2001).

    Article  Google Scholar 

  135. Chow, A.Y. et al. Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans. Neural. Syst. Rehabil. Eng. 9, 86–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Voskerician, G. et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24, 1959–1967 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Von Recum, A. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials edn. 2 (Taylor & Francis, Philadelphia, USA, 1999).

    Google Scholar 

  138. Dee, K.C., Puleo, D.A. & Bizios, R. An Introduction to Tissue–Biomaterial Interactions (Wiley, Hoboken, New Jersey, USA, 2002).

    Book  Google Scholar 

  139. Allen, T.M. Stealth liposomes: five years on. J. Liposome Res. 2, 289–305 (1992).

    Article  CAS  Google Scholar 

  140. Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  PubMed  Google Scholar 

  141. Wasiewski, W., Fasco, M.J., Martin, B.M., Detwiler, T.C. & Fenton, J.W. Thrombin adsorption to surfaces and prevention with polyethylene glycol 6,000. Thrombosis Res. 8, 881–886 (1976).

    Article  CAS  Google Scholar 

  142. Blume, G. & Cevc, G. Liposomes for the sustained drug release in vivo . Biochim. Biophys. Acta 1029, 91–97 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Shain, W. et al. Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 186–188 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.L. and R.L. thank the US National Institutes of Health for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaVan, D., McGuire, T. & Langer, R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 21, 1184–1191 (2003). https://doi.org/10.1038/nbt876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing