Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of drugs active against mammalian prions using a yeast-based screening assay

Abstract

We have developed a rapid, yeast-based, two-step assay to screen for antiprion drugs. The method allowed us to identify several compounds effective against budding yeast prions responsible for the [PSI+] and [URE3] phenotypes. These inhibitors include the kastellpaolitines, a new class of compounds, and two previously known molecules, phenanthridine and 6-aminophenanthridine. Two potent promoters of mammalian prion clearance in vitro, quinacrine and chlorpromazine, which share structural similarities with the kastellpaolitines, were also active in the assay. The compounds isolated here were also active in promoting mammalian prion clearance. These results validate the present method as an efficient high-throughput screening approach to identify new prion inhibitors and furthermore suggest that biochemical pathways controlling prion formation and/or maintenance are conserved from yeast to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the antiprion compound screening assay.
Figure 2: Isolation and activity enhancement of active compounds using a structure/activity approach.
Figure 3: Synergy between active compounds and GuHCl and implementation of a [URE3]-based secondary screen.
Figure 4: 6AP efficiently cures [PSI+] prion in liquid culture.
Figure 5: Validation of the yeast-based method for screening mammalian prion inhibitors.

Similar content being viewed by others

References

  1. Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. & Heppner, F.L. Interventional strategies against prion diseases. Nat. Rev. Neurosci. 2, 745–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wille, H. et al. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99, 3563–3568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen, F.E. et al. Structural clues to prion replication. Science 264, 530–531 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Korth, C., May, B.C., Cohen, F.E. & Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA 98, 9836–9841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wickner, R.B., Edskes, H.K., Roberts, B.T., Pierce, M. & Baxa, U. Prions of yeast as epigenetic phenomena: high protein “copy number” inducing protein “silencing”. Adv. Genet. 46, 485–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Cox, B.S. Psi, a cytoplasmic supressor of super-supressor in yeast. Heredity 20, 505–521 (1965).

    Article  Google Scholar 

  8. Lacroute, F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wickner, R.B. [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Serio, T.R. & Lindquist, S.L. [PSI+], SUP35, and chaperones. Adv. Protein Chem. 57, 335–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Couzin, J. Molecular biology. In yeast, prions' killer image doesn't apply. Science 297, 758–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. True, H.L. & Lindquist, S.L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wegrzyn, R.D., Bapat, K., Newnam, G.P., Zink, A.D. & Chernoff, Y.O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell. Biol. 21, 4656–4669 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eaglestone, S.S., Ruddock, L.W., Cox, B.S. & Tuite, M.F. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 240–244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferreira, P.C., Ness, F., Edwards, S.R., Cox, B.S. & Tuite, M.F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Jung, G. & Masison, D.C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. & Liebman, S.W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Nishida, N. et al. Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J. Virol. 74, 320–325 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blondel, M. et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J. 19, 6085–6097 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tuite, M.F., Mundy, C.R. & Cox, B.S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, G.W., Song, Y. & Masison, D.C. Deletion of the Hsp70 chaperone gene SSB causes hypersensitivity to guanidine toxicity and curing of the [PSI(+)] prion by increasing guanidine uptake in yeast. Mol. Genet. Genomics 269, 304–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Schlumpberger, M., Prusiner, S.B. & Herskowitz, I. Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21, 7035–7046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Bellot, E., Guillemet, E. & Cullin, C. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J. 19, 3215–3222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Bellot, E. et al. The [URE3] phenotype: evidence for a soluble prion in yeast. EMBO Rep. 3, 76–81 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zamora, J.M., Pearce, H.L. & Beck, W.T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33, 454–462 (1988).

    CAS  PubMed  Google Scholar 

  26. Haigh, J.C., Mackintosh, C. & Griffin, F. Viral, parasitic and prion diseases of farmed deer and bison. Rev. Sci. Tech. 21, 219–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Jarrett, J.T. & Lansbury, P.T., Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osherovich, L.Z. & Weissman, J.S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell 106, 183–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Meriin, A.B. et al. Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caughey, B. & Race, R.E. Potent inhibition of scrapie-associated PrP accumulation by congo red. J. Neurochem. 59, 768–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Supattapone, S., Nguyen, H.O., Cohen, F.E., Prusiner, S.B. & Scott, M.R. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 96, 14529–14534 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guthrie, C. & Fink, G.R. Guide to Yeast Genetics and Molecular Biology, 194 (Academic Press, San Diego, California, 1991).

    Google Scholar 

  34. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Saupe, L. Maillet, M. Koken and M. Cock for critical reading of the manuscript, N. Desban for technical assistance and members of our laboratories for helpful discussions. We are indebted to S.L. Linquist, M.F. Tuite and to M. Philippe for their kind gift of anti-Sup35p antibodies. This research was supported by the Groupement d'Intérêt Scientifique 'Infections à prions' from the French Ministère de la Recherche, PRIR from Conseil Régional de Bretagne (M.B.) and the Ministère de la Recherche/INSERM/CNRS Molécules et Cibles Thérapeutiques program (L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Blondel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, S., Talarek, N., Andrieu, T. et al. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 21, 1075–1081 (2003). https://doi.org/10.1038/nbt855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing