Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transfection-independent production of alphavirus replicon particles based on poxvirus expression vectors

Abstract

This report describes a transfection-independent system for packaging alphavirus replicon vectors using modified vaccinia virus Ankara (MVA) vectors to express all of the RNA components necessary for the production of Venezuelan equine encephalitis (VEE) virus replicon particles (VRP). Infection of mammalian cells with these recombinant MVA vectors resulted in robust expression of VEE structural genes, replication of the alphavirus vector and high titers of VRP. In addition, VRP packaging was achieved in a cell type (fetal rhesus lung) that has been approved for the manufacturing of vaccines destined for human use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MVA-based VRP packaging system.

Similar content being viewed by others

References

  1. Dubensky, T.W., Polo, J.M. & Jolly, D.J. in Gene Therapy: Therapeutic Mechanisms and Strategies (eds. Templeton, N.S. & Lasic, D.D.) 109–130 (Marcel Dekker, New York, USA 2000).

    Google Scholar 

  2. Rayner, J.O., Dryga, S.A. & Kamrud, K.I. Alphavirus vectors and vaccination. Rev. Med. Virol. 12, 279–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Driver, D.A. et al. Layered amplification of gene expression with a DNA gene delivery system. DNA vaccines. 772, 261–264 (1995).

    CAS  Google Scholar 

  4. Davis, N.L., Brown, K.W. & Johnston, R.E. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J. Virol. 70, 3781–3787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hevey, M., Negley, D., Pushko, P., Smith, J. & Schmaljohn, A. Marburg virus vaccines based upon alpavirus replicons protect guinea pigs and nonhuman primates. Virology 251, 28–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Davis, N.L. et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J. Virol. 74, 371–378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis, N.L. et al. Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53, 209–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Frolov, I. et al. Alphavirus-based expression vectors: strategies and Applications. Proc. Natl. Acad. Sci. USA 93, 11371–11377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pushko, P. et al. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Smerdou, C. & Liljestrom, P. Two-helper RNA system for production of recombinant Semliki Forest virus particles. J. Virol. 73, 1092–1098 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Polo, J.M. et al. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus–derived vectors. Proc. Natl. Acad. Sci. USA 96, 4598–4603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weiss, B.G. & Schlesinger, S. Recombination between Sindbis virus RNAs. J. Virol. 65, 4017–4025 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berglund, P. et al. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Bio/Technology 11, 916–920 (1993).

    CAS  Google Scholar 

  14. Sutter, G. & Moss, B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 89, 10847–10851 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kovacs, G.R., Parks, C.L., Vasilakis, N. & Udem, S.A. Enhanced genetic rescue of negative-strand RNA viruses: use of an MVA-T7 RNA polymerase vector and DNA replication inhibitors. J. Virol. Meth. 111, 29–36 (2003).

    Article  CAS  Google Scholar 

  16. Chakrabarti, S., Sisler, J.R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. BioTechniques 23, 1094–1097 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, N.L. et al. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology 183, 20–31 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Carroll, M. & Moss, B. Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Monroe, S.S. & Schlesinger, S. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends. Proc. Natl. Acad. Sci. USA 80, 3279–3283 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Velders, M. et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivery human papillomavirus 16 E7 RNA. Cancer Res. 61, 7861–7869 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bernard Moss and Linda Wyatt for providing the vaccinia virus vector plasmids and MVA, and Jonathan Smith, Mike Parker, Peter Pushko and Kurt Kamrud for helpful discussions and technical advice with the VEE expression system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald R Kovacs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilakis, N., Falvey, D., Gangolli, S. et al. Transfection-independent production of alphavirus replicon particles based on poxvirus expression vectors. Nat Biotechnol 21, 932–935 (2003). https://doi.org/10.1038/nbt845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing