Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry

Abstract

Phosphoinositides (phosphorylated derivatives of phosphatidylinositol, PI) are versatile intracellular signaling lipids whose occurrence in low concentrations complicates direct mass measurements1,2,3. Here we present a sensitive method to detect, identify and quantify phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) with different fatty acid compositions (phosphoinositide profiles) in total lipid extracts by electrospray ionization mass spectrometry (ESI-MS). Using this method, we detected elevated concentrations of PIP2 in human fibroblasts from patients with Lowe syndrome, a genetic disorder that affects phosphoinositide metabolism4. Saccharomyces cerevisiae cells deficient in enzymes involved in PIP metabolism—Sac1p, a phosphoinositide phosphatase5, and Vps34p and Pik1p, a PI 3-kinase6 and PI 4-kinase7, respectively—showed not only different PIP concentrations but also differential changes in PIP profiles indicating metabolic and/or subcellular pooling. Mass spectrometric analysis of phosphoinositides offers unique advantages over existing approaches and may represent a powerful diagnostic tool for human diseases that involve defective phosphoinositide metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection, identification and quantification of phosphoinositides in total brain lipid extract by ESI-MS.
Figure 2: Detection of enzymatic products from phosphoinositide kinase and phosphatase reactions in vivo and profiling of phosphoinositides in yeast mutants.

Similar content being viewed by others

References

  1. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  2. Martin, T.F. PI(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499 (2001).

    Article  CAS  Google Scholar 

  3. Odorizzi, G., Babst, M. & Emr, S.D. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25, 229–235 (2000).

    Article  CAS  Google Scholar 

  4. Nussbaum, R.L. & Suchy, S.F. in Metabolic and Molecular Basis of Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 6257–6266 (McGraw-Hill, New York, 1998).

    Google Scholar 

  5. Guo, S., Stolz, L.E., Lemrow, S.M. & York, J.D. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274, 12990–12995 (1999).

    Article  CAS  Google Scholar 

  6. Schu, P.V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  Google Scholar 

  7. Walch-Solimena, C. & Novick, P. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat. Cell Biol. 1, 523–525 (1999).

    Article  CAS  Google Scholar 

  8. Brugger, B., Erben, G., Sandhoff, R., Wieland, F.T. & Lehmann, W.D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 94, 2339–2344 (1997).

    Article  CAS  Google Scholar 

  9. Ivanova, P.T. et al. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc. Natl. Acad. Sci. USA 98, 7152–7157 (2001).

    Article  CAS  Google Scholar 

  10. Muddiman, D.C., Cheng, X., Udseth, H.R. & Smith, R.D. Charge-state reduction with improved signal intensity of oligonucleotides in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 7, 697–706 (1996).

    Article  CAS  Google Scholar 

  11. Hsu, F.F. & Turk, J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J. Am. Soc. Mass Spectrom. 11, 986–999 (2000).

    Article  CAS  Google Scholar 

  12. Suchy, S.F., Lin, T., Horwitz, J.A., O'Brien, W.E. & Nussbaum, R.L. First report of prenatal biochemical diagnosis of Lowe syndrome. Prenat. Diagn. 18, 1117–1121 (1998).

    Article  CAS  Google Scholar 

  13. Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  Google Scholar 

  14. Kim, S.A., Taylor, G.S., Torgersen, K.M. & Dixon, J.E. Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease. J. Biol. Chem. 277, 4526–4531 (2002).

    Article  CAS  Google Scholar 

  15. Hama, H., Schnieders, E.A., Thorner, J., Takemoto, J.Y. & DeWald, D.B. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 34294–34300 (1999).

    Article  CAS  Google Scholar 

  16. Stack, J.H., Herman, P.K., Schu, P.V. & Emr, S.D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12, 2195–2204 (1993).

    Article  CAS  Google Scholar 

  17. Nemoto, Y. et al. Functional characterization of a mammalian sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J. Biol. Chem. 275, 34293–34305 (2000).

    Article  CAS  Google Scholar 

  18. Schneiter, R. et al. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146, 741–754 (1999).

    Article  CAS  Google Scholar 

  19. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  Google Scholar 

  20. Wenk, M.R. et al. PIP kinase Iγ is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron 32, 79–88 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Peter Novick for providing us with yeast strains. This work was supported by grants from the US National Institutes of Health (NS36251, CA46128, DK 54913 and ADA to P.D.C. and DK59635 and DK49230 to G.I.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus R Wenk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenk, M., Lucast, L., Di Paolo, G. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21, 813–817 (2003). https://doi.org/10.1038/nbt837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing