Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed genotyping with sequence-tagged molecular inversion probes

Abstract

We report on the development of molecular inversion probe (MIP) genotyping, an efficient technology for large-scale single nucleotide polymorphism (SNP) analysis. This technique uses MIPs to produce inverted sequences, which undergo a unimolecular rearrangement and are then amplified by PCR using common primers and analyzed using universal sequence tag DNA microarrays, resulting in highly specific genotyping. With this technology, multiplex analysis of more than 1,000 probes in a single tube can be done using standard laboratory equipment. Genotypes are generated with a high call rate (95%) and high accuracy (>99%) as determined by independent sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection for circularized padlock probes.
Figure 2: Molecular inversion probes.
Figure 3: Process flow and array image.
Figure 4: Assay performance.

Similar content being viewed by others

References

  1. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    Article  CAS  Google Scholar 

  2. Syvanen, A.C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942 (2001).

    Article  CAS  Google Scholar 

  3. Nilsson, M. et al. Making ends meet in genetic analysis using padlock probes. Hum. Mutat. 19, 410–415 (2002).

    Article  CAS  Google Scholar 

  4. Elnifro, E.M., Ashshi, A.M., Cooper, R.J. & Klapper, P.E. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559–570 (2000).

    Article  CAS  Google Scholar 

  5. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  6. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  7. Lyamichev, V. et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat. Biotechnol. 17, 292–296 (1999).

    Article  CAS  Google Scholar 

  8. Eis, P.S. et al. An invasive cleavage assay for direct quantitation of specific RNAs. Nat. Biotechnol. 19, 673–676 (2001).

    Article  CAS  Google Scholar 

  9. Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    Article  CAS  Google Scholar 

  10. Lizardi, P.M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

    Article  CAS  Google Scholar 

  11. Faruqi, A.F. et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2, 4 (2001).

    Article  CAS  Google Scholar 

  12. Antson, D.O., Isaksson, A., Landegren, U. & Nilsson, M. PCR-generated padlock probes detect single nucleotide variation in genomic DNA. Nucleic Acids Res. 28, E58 (2000).

    Article  CAS  Google Scholar 

  13. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456 (1996).

    Article  CAS  Google Scholar 

  14. Zhang, D.Y., Brandwein, M., Hsuih, T.C. & Li, H. Amplification of target-specific, ligation-dependent circular probe. Gene 211, 277–285 (1998).

    Article  CAS  Google Scholar 

  15. Abravaya, K., Carrino, J.J., Muldoon, S. & Lee, H.H. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 23, 675–682 (1995).

    Article  CAS  Google Scholar 

  16. Banér, J., Nilsson, M., Mendel-Hartvig, M. & Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078 (1998).

    Article  Google Scholar 

  17. Gharavi, A.G. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat. Genet. 26, 354–357 (2000).

    Article  CAS  Google Scholar 

  18. Fakhrai-Rad, H., Pourmand, N. & Ronaghi, M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum. Mutat. 19, 479–485 (2002).

    Article  CAS  Google Scholar 

  19. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing Genome Res. 11, 3–11 (2001).

    Article  CAS  Google Scholar 

  20. Fan, J.B. et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    Article  CAS  Google Scholar 

  21. Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Tran, T. Brundage, J. Patterson, E. Prakash and C. Bruckner for technical assistance and T. Jones and P. Oefner for helpful discussions. This work was supported by NIH HG00205. The work in Uppsala was supported by the Beijer and Wallenberg Foundations, the Research Councils of Sweden for natural science and for medicine, the Swedish Cancer Fund and Polysaccharide Research AB (Uppsala).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Ronaghi.

Ethics declarations

Competing interests

P.H., M.J., E.A.N., G.A.K.-N., H. F.-R. and T.D.W. are currently employed by ParAllele Bioscience (South San Francisco, California), a company that is commercializing the Molecular Inversion Probe Assay. M.R., U.L. and R.W.D. are shareholders of ParAllele Bioscience. J.B. and M.N. have no association with the company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardenbol, P., Banér, J., Jain, M. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21, 673–678 (2003). https://doi.org/10.1038/nbt821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing