Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases

Abstract

Direct genomic manipulation at a specific locus is still not feasible in most vertebrate model organisms. In vertebrate cell lines, genomic lesions at a specific site have been introduced using zinc-finger nucleases (ZFNs)1,2,3. Here we adapt this technology to create targeted mutations in the zebrafish germ line. ZFNs were engineered that recognize sequences in the zebrafish ortholog of the vascular endothelial growth factor-2 receptor, kdr (also known as kdra). Co-injection of mRNAs encoding these ZFNs into one-cell-stage zebrafish embryos led to mutagenic lesions at the target site that were transmitted through the germ line with high frequency. The use of engineered ZFNs to introduce heritable mutations into a genome obviates the need for embryonic stem cell lines and should be applicable to most animal species for which early-stage embryos are easily accessible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering ZFNs that target kdr exon 2 using a bacterial one-hybrid system.
Figure 2: Effects of ZFN mRNA injections on zebrafish embryos.
Figure 3: Segmental artery defects in ZFN-mutation bearing embryos.
Figure 4: Genotypic characterization of ZFN-induced mutations.

Similar content being viewed by others

References

  1. Porteus, M.H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  4. Koller, B.H. & Smithies, O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 8932–8935 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright, D.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Wright, D.A. et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652 (2006).

    Article  PubMed  Google Scholar 

  13. Carroll, D., Morton, J.J., Beumer, K.J. & Segal, D.J. Design, construction and in vitro testing of zinc finger nucleases. Nat. Protoc. 1, 1329–1341 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Q., Xia, Z. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Covassin, L.D., Villefranc, J.A., Kacergis, M.C., Weinstein, B.M. & Lawson, N.D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl. Acad. Sci. USA 103, 6554–6559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turner, D.L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, P. et al. Mutation detection using Surveyor nuclease. Biotechniques 36, 702–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Mandell, J.G. & Barbas, C.F. III . Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cornu, T.I. et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16, 352–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Westerfield, M. The Zebrafish Book. (University of Oregon Press, Eugene, OR, 1993).

  27. Xu, Q. Microinjection into zebrafish embryos. in Molecular Methods in Developmental Biology Vol. 127. (ed. M. Guille) 125–132 (Humana Press, Inc., Totowa, NJ, 1999).

  28. Meng, X. & Wolfe, S.A. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat. Protoc. 1, 30–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Noyes, M.B. et al. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res. published online, doi:10.1093/nar/gkn048 (10 March 2008).

  30. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  31. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Keith Joung for helpful discussions and for pST1374. We thank Charles Sagerstrom and Arndt Siekmann for critical reading of this manuscript. We are grateful to Mike Kacergis for valuable assistance in fish care and genotyping. We are grateful to Claude Gazin, Ellen Kittler and Maria Zapp for providing MPSS protocols and technical advice in support of this work. We also thank the UMass Deep Sequencing Core for MSPP analysis service and David LaPointe for providing bioinformatic and computational support. X.M., M.B.N. and S.A.W. and their work were supported by 1R01GM068110 from National Institute of General Medical Sciences. N.D.L. and his work was supported by R01HL079266 from National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.M., N.D.L. and S.A.W. designed experiments and analyzed data. X.M. and N.D.L. carried out experiments. M.B.N. developed the omega-based bacterial one-hybrid system. S.A.W. developed the algorithm and PERL script to identify preferred recognition elements. L.J.Z. analyzed Solexa sequencing data. X.M., N.D.L. and S.A.W. wrote the paper.

Corresponding authors

Correspondence to Nathan D Lawson or Scot A Wolfe.

Supplementary information

Supplementary Text and Figures

Figures 1–10, Tables 1–5, Methods (PDF 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Noyes, M., Zhu, L. et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26, 695–701 (2008). https://doi.org/10.1038/nbt1398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing