Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo

Abstract

Transcription factors are important targets for the treatment of a variety of malignancies but are extremely difficult to inhibit, as they are located in the cell's nucleus and act mainly by protein-DNA and protein-protein interactions. The transcriptional regulators Id1 and Id3 are attractive targets for cancer therapy as they are required for tumor invasiveness, metastasis and angiogenesis. We report here the development of an antitumor agent that downregulates Id1 effectively in tumor endothelial cells in vivo. Efficient delivery and substantial reduction of Id1 protein levels in the tumor endothelium were effected by fusing an antisense molecule to a peptide known to home specifically to tumor neovessels. In two different tumor models, systemic delivery of this drug led to enhanced hemorrhage, hypoxia and inhibition of primary tumor growth and metastasis, similar to what is observed in Id1 knockout mice. Combination with the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin yielded virtually complete growth suppression of aggressive breast tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of Id1-antisense oligonucleotides and Id1-PCAOs.
Figure 2: In vitro homing and activity of Id1-PCAOs.
Figure 3: The uptake of Id1-PCAOs is nucleolin dependent and can be stimulated by VEGF-A.
Figure 4: In vivo tumor homing and activity of Id1-PCAOs.
Figure 5: Combination therapy with 17-AAG affects tumor growth and vascular integrity.
Figure 6: Id1-PCAO inhibits primary tumor growth and metastatic spread of Lewis lung carcinoma allografts.

Similar content being viewed by others

References

  1. Emanuel, B.S. et al. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc. Natl. Acad. Sci. USA 81, 2444–2446 (1984).

    Article  CAS  Google Scholar 

  2. Mushinski, J.F., Potter, M., Bauer, S.R. & Reddy, E.P. DNA rearrangement and altered RNA expression of the c-myb oncogene in mouse plasmacytoid lymphosarcomas. Science 220, 795–798 (1983).

    Article  CAS  Google Scholar 

  3. Vogelstein, B. & Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  CAS  Google Scholar 

  4. Darnell, J.E., Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  Google Scholar 

  5. Wang, L.H., Yang, X.Y., Kirken, R.A., Resau, J.H. & Farrar, W.L. Targeted disruption of stat6 DNA binding activity by an oligonucleotide decoy blocks IL-4-driven T(H)2 cell response. Blood 95, 1249–1257 (2000).

    CAS  PubMed  Google Scholar 

  6. Turkson, J. et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther. 3, 261–269 (2004).

    CAS  PubMed  Google Scholar 

  7. Jing, N. et al. G-quartet oligonucleotides: a new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res. 64, 6603–6609 (2004).

    Article  CAS  Google Scholar 

  8. Mateo-Lozano, S. et al. Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin. Cancer Res. 12, 6781–6790 (2006).

    Article  CAS  Google Scholar 

  9. Sumida, T., Itahana, Y., Hamakawa, H. & Desprez, P.Y. Reduction of human metastatic breast cancer cell aggressiveness on introduction of either form a or B of the progesterone receptor and then treatment with progestins. Cancer Res. 64, 7886–7892 (2004).

    Article  CAS  Google Scholar 

  10. Lee, K.T. et al. Overexpression of Id-1 is significantly associated with tumour angiogenesis in human pancreas cancers. Br. J. Cancer 90, 1198–1203 (2004).

    Article  CAS  Google Scholar 

  11. Vandeputte, D.A. et al. Expression and distribution of id helix-loop-helix proteins in human astrocytic tumors. Glia 38, 329–338 (2002).

    Article  Google Scholar 

  12. Minn, A.J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  Google Scholar 

  13. Gupta, G.P. et al. ID genes mediate tumor re-initiation during breast cancer lung metastasis. Proc. Natl. Acad. Sci. USA (in the press).

  14. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).

    Article  CAS  Google Scholar 

  15. de Candia, P. et al. Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc. Natl. Acad. Sci. USA 100, 12337–12342 (2003).

    Article  CAS  Google Scholar 

  16. Ruzinova, M.B. et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4, 277–289 (2003).

    Article  CAS  Google Scholar 

  17. Li, H., Gerald, W.L. & Benezra, R. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res. 64, 6137–6143 (2004).

    Article  CAS  Google Scholar 

  18. Perk, J. et al. Reassessment of id1 protein expression in human mammary, prostate, and bladder cancers using a monospecific rabbit monoclonal anti-id1 antibody. Cancer Res. 66, 10870–10877 (2006).

    Article  CAS  Google Scholar 

  19. Sakurai, D. et al. Crucial role of inhibitor of DNA binding/differentiation in the vascular endothelial growth factor-induced activation and angiogenic processes of human endothelial cells. J. Immunol. 173, 5801–5809 (2004).

    Article  CAS  Google Scholar 

  20. Belletti, B. et al. Regulation of Id1 protein expression in mouse embryo fibroblasts by the type 1 insulin-like growth factor receptor. Exp. Cell Res. 277, 107–118 (2002).

    Article  CAS  Google Scholar 

  21. Borlak, J., Meier, T., Halter, R., Spanel, R. & Spanel-Borowski, K. Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours. Oncogene 24, 1809–1819 (2005).

    Article  CAS  Google Scholar 

  22. Viloria-Petit, A. et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 61, 5090–5101 (2001).

    CAS  PubMed  Google Scholar 

  23. Casanovas, O., Hicklin, D.J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  Google Scholar 

  24. Porkka, K., Laakkonen, P., Hoffman, J.A., Bernasconi, M. & Ruoslahti, E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc. Natl. Acad. Sci. USA 99, 7444–7449 (2002).

    Article  CAS  Google Scholar 

  25. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  Google Scholar 

  26. Ohtani, N. et al. Opposing effects of Ets and Id proteins on p16(INK4a) expression during cellular senescence. Nature 409, 1067–1070 (2001).

    Article  CAS  Google Scholar 

  27. Fong, S. et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc. Natl. Acad. Sci. USA 100, 13543–13548 (2003).

    Article  CAS  Google Scholar 

  28. Christian, S. et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163, 871–878 (2003).

    Article  CAS  Google Scholar 

  29. Shi, H. et al. Nucleolin is a receptor that mediates antiangiogenic and anti-tumor activity of endostatin. Blood 110, 2899–2906 (2007).

    Article  CAS  Google Scholar 

  30. Zhao, Q. et al. Cellular distribution of phosphorothioate oligonucleotide following intravenous administration in mice. Antisense Nucleic Acid Drug Dev. 8, 451–458 (1998).

    Article  CAS  Google Scholar 

  31. Solit, D.B. et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 8, 986–993 (2002).

    CAS  PubMed  Google Scholar 

  32. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 (1995).

    Article  CAS  Google Scholar 

  33. Doubrovin, M., Serganova, I., Mayer-Kuckuk, P., Ponomarev, V. & Blasberg, R.G. Multimodality in vivo molecular-genetic imaging. Bioconjug. Chem. 15, 1376–1388 (2004).

    Article  CAS  Google Scholar 

  34. Ponomarev, V. et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 740–751 (2004).

    Article  CAS  Google Scholar 

  35. Perk, J., Iavarone, A. & Benezra, R. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer 5, 603–614 (2005).

    Article  CAS  Google Scholar 

  36. Ruzinova, M.B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 13, 410–418 (2003).

    Article  CAS  Google Scholar 

  37. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  38. Reddy, G.R. et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006).

    Article  CAS  Google Scholar 

  39. Corey, D.R. 48000-fold Acceleration of hybridization by chemically modified oligonucleotides. J. Am. Chem. Soc. 117, 9373–9374 (1995).

    Article  CAS  Google Scholar 

  40. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  41. Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).

    Article  CAS  Google Scholar 

  42. Mabjeesh, N.J. et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 62, 2478–2482 (2002).

    CAS  PubMed  Google Scholar 

  43. Petit, A.M. et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 151, 1523–1530 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Henry, S.P., Grillone, L.R., Orr, J.L., Bruner, R.H. & Kornbrust, D.J. Comparison of the toxicity profiles of ISIS 1082 and ISIS 2105, phosphorothioate oligonucleotides, following subacute intradermal administration in Sprague-Dawley rats. Toxicology 116, 77–88 (1997).

    Article  CAS  Google Scholar 

  45. Trepel, M., Arap, W. & Pasqualini, R. Modulation of the immune response by systemic targeting of antigens to lymph nodes. Cancer Res. 61, 8110–8112 (2001).

    CAS  PubMed  Google Scholar 

  46. Arap, M.A. et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275–284 (2004).

    Article  CAS  Google Scholar 

  47. Kolonin, M.G., Saha, P.K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632 (2004).

    Article  CAS  Google Scholar 

  48. Ardelt, P.U. et al. Targeting urothelium: ex vivo assay standardization and selection of internalizing ligands. J. Urol. 169, 1535–1540 (2003).

    Article  CAS  Google Scholar 

  49. Lee, L. et al. Identification of synovium-specific homing peptides by in vivo phage display selection. Arthritis Rheum. 46, 2109–2120 (2002).

    Article  CAS  Google Scholar 

  50. Nowakowski, G.S. et al. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22, 1030–1038 (2004).

    Article  CAS  Google Scholar 

  51. Harrison, J.G. & Balasubramanian, S. Synthesis and hybridization analysis of a small library of peptide-oligonucleotide conjugates. Nucleic Acids Res. 26, 3136–3145 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Simona Curelariu for help with animal models and Ninche Alston for help with in vivo imaging. This work was supported by the Deutsche Forschungsgemeinschaft (fellowship to E.H.), the National Institutes of Health (R.B.), William H. Goodwin and Alice Goodwin and the Commonwealth Cancer Foundation for Research and the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center (R.B.), the Breast Cancer Research Foundation (R.B.) and the Mary Kay Ash Foundation (R.B.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the experimental design and/or execution of the experiments described.

Corresponding author

Correspondence to Robert Benezra.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henke, E., Perk, J., Vider, J. et al. Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo. Nat Biotechnol 26, 91–100 (2008). https://doi.org/10.1038/nbt1366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing