Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Oligonucleotide-based inhibition of embryonic gene expression

Abstract

We describe a technique to define gene function using antisense oligonucleotide (AS-ODN) inhibition of gene expression in mice. A single intravenous injection of an AS-ODN targeting vascular endothelial growth factor (VEGF) into pregnant mice between E7.5–8.5 resulted in a lack of primary angiogenesis. This enabled us to define the critical window required to inhibit VEGF expression and recapitulate the primary loss of function phenotype observed in VEGF (–/–) embryos. This phenotype was sequence-specific and time- and dose-dependent. Injection of an AS-ODN targeting a second gene, E-cadherin, into pregnant mice at E10 confirmed a hypothesized secondary phenotype. This is the first report of AS-ODN inhibition of gene expression in utero and provides a new strategy for target validation in functional genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antisense oligonucleotides.
Figure 2: Transplacental delivery of oligonucleotides.
Figure 3: Oligonucleotide-based inhibition of gene expression.

Similar content being viewed by others

References

  1. Christoffersen, R.E. Translating genomics information into therapeutics: a key role for oligonucleotides. Nat. Biotechnol. 15, 483– 484 (1997).

    Article  CAS  Google Scholar 

  2. Juliano, R.L., Alahari, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16, 494–502 (1999).

    Article  CAS  Google Scholar 

  3. Nyce, J.W. Insight into adenosine receptor function using antisense and gene-knockout approaches. Trends. Pharmacol. Sci. 20, 79–83 (1999).

    Article  CAS  Google Scholar 

  4. Jones, D.A. & Fitzpatrick, F.A. Genomics and the discovery of new drug targets. Curr. Opin. Chem. Biol. 3, 71–76 (1999).

    Article  CAS  Google Scholar 

  5. Bramlage, B., Luzi, E. & Eckstein, F. Designing ribozymes for the inhibition of gene expression. Trends. Biotechnol. 16, 434– 438 (1998).

    Article  CAS  Google Scholar 

  6. Dickinson, L.A. et al. Inhibition of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proc. Natl. Acad. Sci. USA. 95, 12890–12895 (1998).

    Article  CAS  Google Scholar 

  7. Mei, H.Y. et al. Discovery of selective, small-molecule inhibitors of RNA complexes—I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. Bioorg. Med. Chem. 5, 1173–1184 (1997).

    Article  CAS  Google Scholar 

  8. Tatton, W.G., Chalmers-Redman, R.M., Ju, W.Y., Wadia, J. & Tatton, N.A. Apoptosis in neurodegenerative disorders: potential for therapy by modifying gene transcription. J. Neural. Transm. Suppl. 49, 245– 268 (1997).

    CAS  PubMed  Google Scholar 

  9. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Biol. 14, 59– 88 (1998).

    Article  CAS  Google Scholar 

  10. Lai, L.W. & Lien, Y.H. Homologous recombination based gene therapy. Exp. Nephrol. 7, 11– 14 (1999).

    Article  CAS  Google Scholar 

  11. Osterrieder, N. & Wolf, E. Lessons from gene knockouts. Rev. Sci. Tech. 17, 351– 364 (1998).

    Article  CAS  Google Scholar 

  12. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 ( 1998).

    Article  CAS  Google Scholar 

  13. Hynes, R.O. Targeted mutations in cell adhesion genes: what have we learned from them? Dev. Biol. 180, 402–412 (1996).

    Article  CAS  Google Scholar 

  14. Hynes, R.O. & Bader, B.L. Targeted mutations in integrins and their ligands: their implications for vascular biology. Thromb. Haemostasis. 78, 83–87 ( 1997).

    Article  CAS  Google Scholar 

  15. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435– 439 (1996).

    Article  CAS  Google Scholar 

  16. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439– 442 (1996).

    Article  CAS  Google Scholar 

  17. Robinson, G.S. et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl. Acad. Sci. USA. 93, 4851–4856 ( 1996).

    Article  CAS  Google Scholar 

  18. Smyth, A.P., Rook, S.L., Detmar, M. & Robinson, G.S. Antisense oligonucleotides inhibit vascular endothelial growth factor/vascular permeability factor expression in normal human epidermal keratinocytes. J. Invest. Dermatol. 108, 523–526 (1997).

    Article  CAS  Google Scholar 

  19. Chen, B. & Hales, B.F. Antisense oligonucleotide down-regulation of E-cadherin in the yolk sac and cranial neural tube malformations. Biol. Reprod. 53, 1229–1238 (1995).

    Article  CAS  Google Scholar 

  20. Gaudette, M.F., Hampikian, G., Metelev, V., Agrawal, S. & Crain, W.R. Effect on embryos of injection of phosphorothioate-modified oligonucleotides into pregnant mice. Antisense. Res. Dev. 3, 391–397 (1993).

    Article  CAS  Google Scholar 

  21. Bourque, A.J. & Cohen, A.S. Quantitative analysis of phosphorothioate oligonucleotides in biological fluids using direct injection fast anion-exchange chromatography and capillary gel electrophoresis. J. Chromatogr. Biomed. Appl. 662, 343–349 (1994).

    Article  CAS  Google Scholar 

  22. Zhao, Q. et al. Cellular distribution of phosphorothioate oligonucleotide following intravenous administration in mice. Antisense. Nucleic. Acid. Drug Dev. 8, 451–458 (1998).

    Article  CAS  Google Scholar 

  23. Pacifici, G.M. & Nottoli, R. Placental transfer of drugs administered to the mother. Clin. Pharmacokinet. 28, 235–269 (1995).

    Article  CAS  Google Scholar 

  24. Yu, D. et al. Hybrid oligonucleotides: synthesis, biophysical properties, stability studies, and biological activity. Bioorg. Med. Chem. 4, 1685–1692 (1996).

    Article  CAS  Google Scholar 

  25. Guvakova, M.A., Yakubov, L.A., Vlodavsky, I., Tonkinson, J.L. & Stein, C. A. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J. Biol. Chem. 270, 2620– 2627 (1995).

    Article  CAS  Google Scholar 

  26. Rockwell, P. et al. Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 94, 6523– 6528 (1997).

    Article  CAS  Google Scholar 

  27. Takeichi, M. et al. Cadherins in brain patterning and neural network formation. Cold Spring Harb. Symp. Quant. Biol. 62, 505– 510 (1997).

    Article  CAS  Google Scholar 

  28. Anderson, H. Adhesion molecules and animal development. Experientia 46, 2–13 (1990).

    Article  CAS  Google Scholar 

  29. Senger, D.R. et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12, 303–324 (1993).

    Article  CAS  Google Scholar 

  30. Ferrara, N. Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 237, 1– 30 (1999).

    CAS  PubMed  Google Scholar 

  31. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 ( 1994).

    Article  CAS  Google Scholar 

  32. Baumgartner, I. & Isner, J.M. Stimulation of peripheral angiogenesis by vascular endothelial growth factor (VEGF). Vasa. 27, 201–206 ( 1998).

    CAS  PubMed  Google Scholar 

  33. Grunstein, J., Roberts, W.G., Mathieu-Costello, O., Hanahan, D. & Johnson, R.S. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 59, 1592– 1598 (1999).

    CAS  PubMed  Google Scholar 

  34. Kitamoto, Y., Tokunaga, H. & Tomita, K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Invest. 99, 2351–2357 (1997).

    Article  CAS  Google Scholar 

  35. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294– 5299 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel E. Driver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driver, S., Robinson, G., Flanagan, J. et al. Oligonucleotide-based inhibition of embryonic gene expression. Nat Biotechnol 17, 1184–1187 (1999). https://doi.org/10.1038/70724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing