Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Engineered Chimeric Streptavidin Tetramers as Novel Tools for Bioseparations and Drug Delivery

Abstract

We report the construction of chimeric streptavidin tetramers that are composed of subunits of both wild-type (WT) streptavidin and genetically-engineered streptavidin variants designed for enhanced bioseparation and drug delivery performance. Subunit mixing is accomplished by guanidine thiocyanate-induced denaturation of an equimolar mixture of WT streptavidin and the respective site-directed mutant, followed by renaturation and reassociation of mixed tetramers. In the first example, we demonstrate the mixing of WT subunits with an Asn49Cys (N49C) mutant. The WT/N49C tetramers can be used for site-specific and stoichiometric attachment of therapeutics/imaging agents or targeting proteins through the genetically-engineered thiol while retaining unhindered access to biotin-binding at the WT subunits. Second, we demonstrate that the Hisl27Cys mutation (H127C) results in a streptavidin mutant that forms a disulfide-linked dimer under non-reducing conditions. Mixing of H127C and WT streptavidin subunits results in chimeric tetramers where both the stoichiometry (WT:H127C::1:1) and subunit architecture is controlled by the unique disulfide bridge engineered into H127C. In the third example, WT subunits were mixed with the subunits of a site-directed mutant, Trpl20Ala (W120A), which displays a biotin dissociation constant that is enhanced by more than 104 compared to WT streptavidin. The W120A biotin-binding affinity is sufficiently high (Ka ≈107 M−1) to immobilize the mutant on a biotin-agarose affinity chromatography column, but the engineered off-rate allows for facile elution with excess biotin at physiological pH, whereas WT streptavidin is irreversibly immobilized on the column. We demonstrate that the purified WT/W120A chimeric tetramers combine the advantages of both subunits, allowing for irreversible immobilization of biotinylated targets at the WT subunit, while retaining the reversible separation capabilities of the W120A subunits via biotin-agarose affinity chromatography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilchek, M. and Bayer, E.A. 1990. Avidin-biotin technology. Methods Enzymol. 184: 5–13; ibid, 14–45.

    Article  CAS  Google Scholar 

  2. Rosebrough, S.F. 1993. Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nucl. Med. Biol. 20: 663–668.

    Article  CAS  Google Scholar 

  3. Hnatowich, D.J. 1994. The in vivo uses of streptavidin and biotin: a short progress report. Nucl. Med. Commun. 15: 575–577.

    Article  CAS  Google Scholar 

  4. Hnatowich, D.J., Virzi, F. and Rusckowski, M. 1987. Investigations of avidin and biotin for imaging applications. J. Nucl. Med. 28: 1294–1302.

    CAS  PubMed  Google Scholar 

  5. Paganelli, G., Riva, P., Deleide, G., Clivio, A., Chiolerio, F., Scassellati, G.A., Malcovati, M. and Siccardi, A.G. 1988. In vivo labelling of biotinylated monoclonal antibodies by radioactive avidin: a strategy to increase tumor radiolocalization. Int. J. Cancer Suppl. 2: 121–125.

    Article  CAS  Google Scholar 

  6. Oehr, P., Westermann, J. and Biersack, H.J. 1988. Streptavidin and biotin as potential tumor imaging agents. J. Nucl. Med. 29: 728–729.

    CAS  PubMed  Google Scholar 

  7. Kalofonos, H.P., Rusckowski, M., Siebecker, D.A., Sivolapenko, G.B., Snook, D., Lavender, J.P., Epenetos, A.A. and Hnatowich, D.J. 1990. Imaging of tumor in patients with indium-111 -labeled biotin and sueptavidin-conjugated antibodies: preliminary communication. J. Nucl. Med. 31: 1791–1796.

    CAS  PubMed  Google Scholar 

  8. Paganelli, G., Magnani, P. and Fazio, F. 1993. Pretargeting of carcinomas with the avidin-biotin system. Int. J. Biol. Markers. 8: 155–9.

    Article  CAS  Google Scholar 

  9. Paganelli, G., Pervez, S., Siccardi, A.G., Rowlinson, G., Deleide, G., Chiolerio, F., Malcovati, M., Scassellati, G.A. and Epenetos, A.A. 1991. Intraperitoneal radio-localization of tumors pre-targeted by biotinylated monoclonal antibodies. Int. J. Cancer 45: 1184–1189.

    Article  Google Scholar 

  10. Paganelli, G., Malcovati, M. and Fazio, F. 1990. Monoclonal antibody pretargeting techniques for tumour localization: the avidin-biotin system. Nucl. Med. Commun. 12: 211–234.

    Article  Google Scholar 

  11. Green, N.M. 1975. Avidin. Adv. Prot. Chem. 29: 85–143.

    Article  CAS  Google Scholar 

  12. Weber, P.C., Ohlendorf, D.H., Wendoloski, J.J. and Salemme, F.R. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85–88.

    Article  CAS  Google Scholar 

  13. Hendrickson, W.A., Pahler, A., Smith, J.L., Satow, Y., Merritt, E.A. and Phizackerley, R.P. 1989. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc. Natl. Acad. Sci. USA 86: 2190–2194.

    Article  CAS  Google Scholar 

  14. Sano, T. and Cantor, C.R. 1991. A streptavidin-protein A chimera that allows one-step production of of a variety of specific antibody conjugates. Bio/Technology 9: 1377–1381.

    Article  Google Scholar 

  15. Sano, T., Glazer, A.N. and Cantor, C.R. 1992. A streptavidin-metallothionein chimera that allows specific labeling of biological materials with many different heavy metal ions. Proc. Natl. Acad. Sci. USA 89: 1534–1538.

    Article  CAS  Google Scholar 

  16. Dubel, S., Breitling, F., Kontermann, R., Schmidt, T., Skerra, A. and Little, M. 1995. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods 178: 201–209.

    Article  CAS  Google Scholar 

  17. Carter, P., Bedouelle, H. and Winter, G. 1986. Construction of heterodimer tyrosyl-tRNA synthetase shows tRNATyr interacts with both subunits. Proc. Natl. Acad. Sci. USA 83: 1189–1192.

    Article  CAS  Google Scholar 

  18. Ward, W.H., Jones, D.H. and Fersht, A.R. 1986. Protein engineering of homodimeric tyrosyl-tRNA synthetase to produce active heterodimers. J. Biol. Chem. 261: 9576–9578.

    CAS  PubMed  Google Scholar 

  19. Carreras, C.W., Costi, P.M. and Santi, D.V. 1994. Heterodimeric thymidylate synthases with c-terminal deletion on one subunit. J. Biol. Chem. 269: 12444–12446.

    CAS  PubMed  Google Scholar 

  20. Erijman, L. and Weber, G. 1991. Oligomeric protein associations: transition from stochastic to deterministic equilibrium. Biochemistry 30: 1595–1599.

    Article  CAS  Google Scholar 

  21. Erijman, L. and Weber, G. 1993. Use of sensitized fluorescence for the study of the exchange of subunits in protein aggregates. Photochem. Photobiol. 57: 411–415.

    Article  CAS  Google Scholar 

  22. Chilkoti, A., Tan, P.H. and Stayton, P.S. 1995. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex. Proc. Natl. Acad. Sci. USA 92: 1754–1758.

    Article  CAS  Google Scholar 

  23. Chilkoti, A. and Stayton, P.S. Molecular origins of the slow dissociation kinetics of the streptavidin-biotin complex. J. Am. Chem. Soc. In press.

  24. Kurzban, G.P., Bayer, E.A., Wilchek, M. and Horowitz, P.M. 1990. The quaternary structure of streptavidin in urea. J. Biol. Chem. 266: 14470–14477.

    Google Scholar 

  25. Cuatrecasas, P. and Wilchek, M. 1969. Single-step purification of avidin from egg white by affinity chromatography on biocytin-sepharose columns. Biochem. Biophys. Res. Commun. 33: 235–239.

    Article  Google Scholar 

  26. Heney, G. and Orr, G.A. 1981. The purification of avidin and its derivatives on 2- iminobiotin-6-aminohexyl-sepharose 4B. Anal. Biochem. 114: 92–96.

    Article  CAS  Google Scholar 

  27. Orr, G. 1981. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J. Biol. Chem. 256: 761–766.

    CAS  PubMed  Google Scholar 

  28. Hoffman, K., Wood, S.W., Brinton, C.C., Montbellier, J.A. and Finn, F.F. 1980. Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc. Natl. Acad. Sci. USA 77: 4666–4668.

    Article  Google Scholar 

  29. Light-Wahl, K.J., Schwartz, B.L. and Smith, R.D. 1994. Observation of the noncovalent quaternary associations of proteins by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 116: 5271–5278.

    Article  CAS  Google Scholar 

  30. Schwartz, B.L., Light-Wahl, K.J. and Smith, R.D. 1994. Observation of noncovalent complexes of the avidin tetramer by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 5: 201–204.

    Article  CAS  Google Scholar 

  31. Schwartz, B.L., Bruce, J.E., Anderson, G.A., Hofstadler, S.A., Rockwood, A.L., Smith, R.D., Chilkoti, A. and Stayton, P.S. 1995. Dissociation of tetrameric ions of noncovalent streptavidin complexes formed by electrospray ionization. J. Am. Soc. Mass Spectrom. 6: 459–465.

    Article  CAS  Google Scholar 

  32. Kohanski, R.A. and Lane, M.D. 1990. Monovalent avidin affinity columns. Meth. Enzymol. 184: 194–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S. Stayton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilkoti, A., Schwartz, B., Smith, R. et al. Engineered Chimeric Streptavidin Tetramers as Novel Tools for Bioseparations and Drug Delivery. Nat Biotechnol 13, 1198–1204 (1995). https://doi.org/10.1038/nbt1195-1198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1195-1198

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing