Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Modular Integrated Fluidized Bed Bioreactor Technology

Abstract

We describe the design and demonstrate the application of a modular integrated fluidized bed bioreactor system. Basically the system is a reactor vessel equipped with an extending cylinder and a liquid distributor plate. Instead of an external recirculation loop, as used in existing fluidized bed systems, a low shear stress impeller is used as the recirculation pump. The system has several unique features, such as modular exchangeable elements, efficient oxygenation and the option of operating as a stirred tank–, a packed bed– or a fluidized bed reactor. An example of a fluidized bed run using CHO–K1 cells is shown. Under standard culture conditions a 100–fold increase in cell density (up to 1.2 × 108 cells/ml) was achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brennan, A.J., Shewitz, J. and Mcmillan, J.D. 1987. A perfusion system for antibody production by shear sensitive hybridoma cells in a stirred reactor. Biotechnol. Tech. 1: 169–174.

    Article  CAS  Google Scholar 

  2. Knazek, R.A., Gullino, P.M., Kohler, P.O. and Dedrick, R.L. 1972. Cell culture on artificial capillaries: An approach to tissue growth in vitro. Science: 178: 65–66.

    Article  CAS  Google Scholar 

  3. Schönherr, O.T. and VanGelder, P. 1988. Culture of animal cells in hollow-fibre dialysis systems,.p. 337–355 In: Animal Cell Biotechnology, Vol. III. Spier, R. E. and Griffiths, J. B. (Eds.). Academic Press, London.

    Google Scholar 

  4. Tokashiki, M. and Arai, T. 1989. High density culture of mouse-human hybridoma cells using a perfusion culture apparatus with multi-settling zones to separate cells from the culture medium. Cytotechnology 2: 5–8.

    Article  CAS  Google Scholar 

  5. Comer, M.J., Kearns, J., Wahl, J., Munster, M., Lorenz, T., Szperalski, B., Koch, S., Behrendt, U. and Brunner, H. 1990. Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation. Cytotechnology 3: 295–299.

    Article  CAS  Google Scholar 

  6. Berg, G.J. and Bödeker, B.G.D. 1988. Employing a ceramic matrix for the immobilization of animal cells in culture, p. 322–335 In: Animal Cell Biotechnology, Volume III. Spier, R. E. and Griffiths, J. B. (Eds.). Academic Press, London.

    Google Scholar 

  7. Himmelfarb, P., Thayer, P.S. and Martin, H.E. 1969. Spin filter culture: the propagation of mammalian cells in suspension. Science 164: 555–557.

    Article  CAS  Google Scholar 

  8. Varecka, R. and Scheirer, W. 1987. Use of a rotating wire cage for retention of animal cells in a perfusion fermenter. Dev. Biol. Stand. 66: 259–271.

    Google Scholar 

  9. Bliem, R., Oakley, R., Matsuoka, K. and Taiariol, V. 1990. Performance characteristics of mammalian cell culture process operating continuously with protein-free medium. App. Biochem. and Biotechnol. 26: 217–229.

    Article  CAS  Google Scholar 

  10. Nilsson, K., Scheirer, W., Merten, O.W., Östberg, L., Liehl, E., Katinger, H. and Mosbach, K. 1983. Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature 302: 629–630.

    Article  CAS  Google Scholar 

  11. Familetti, P.C. and Fredericks, J.E. 1988. Techniques for mammalian cell immobilization. Bio/Technology 6: 41–44.

    Article  Google Scholar 

  12. Van Wezel, A.L. 1967. Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature 216: 64–65.

    Article  CAS  Google Scholar 

  13. Van Wezel, A.L. and Van der Velden-DeGroot, C.A.M. 1978. Large scale cultivation of animal cells in microcarrier culture. Process Biochemistry 3: 6–8.

    Google Scholar 

  14. Nilsson, K., Buzsaky, F. and Mosbach, K. 1986. Growth of anchorage-dependent cells on macroporous microcarriers. Bio/Technology 4: 989–990.

    Article  Google Scholar 

  15. Spier, R.E. and Whiteside, J.P. 1976. The production of foot-and-mouth disease virus from BHK 21 C13 cells grown on the surface of glass spheres. Biotech. Bioeng. 18: 649–657.

    Article  CAS  Google Scholar 

  16. Looby, D. and Griffiths, J.B. 1989. Fixed bed porous glass sphere (porosphere) bioreactors for animal cells. Cytotechnology 1: 339–346.

    Article  Google Scholar 

  17. Bliem, R., Oakley, K., Matsuoka, R., Varecka, R. and Taiariol, V. 1990. Antibody production in packed bed reactors using serum-free and protein-free medium. Cytotechnology 4: 279–283.

    Article  CAS  Google Scholar 

  18. Young, M.W. and Dean, R.C. jr., 1987. Optimization of mammalian-cell bioreactors. Bio/Technology 5: 835–837.

    CAS  Google Scholar 

  19. Reiter, M., Hohenwarter, O., Gaida, T., Zach, N., Schmatz, C., Blüml, G., Weigang, F., Nilsson, K. and Katinger, H. 1990. The use of macroporous gelatin carriers for the cultivation of mammalian cells in fluidised bed reactors. Cytotechnology 3: 271–277.

    Article  CAS  Google Scholar 

  20. Dean, R.C., Jr., Karkare, S.B., Ray, N.G., Runstadler, P.W. Jr. and Vankatasubramanian 1988. Large scale culture of hybridoma and mammalian cells in fluidized bed bioreactors, p. 125–142 In: Bioreactor Immobilized Enzymes and Cells. Moo-Young, M. (Ed.). Elsevier Applied Science, London and New York.

    Google Scholar 

  21. Griffiths, J.B. 1988. Overview of cell culture systems and their scale-up, 322–335 In: Animal Cell Biotechnology, Volume III. Spier, R. E. and Griffiths, J. B.(Eds.). Academic Press, London.

    Google Scholar 

  22. Rüker, F., Ebert, V., Kohl, J., Steindl, F., Riegler, H. and Katinger, H. 1991 Expression of a human monoclonal anti-HIV-1 antibody in CHO cells. Annals of the New York Academy of Sciences, In press

    Book  Google Scholar 

  23. Bl¨uml, G., Zach, N., Reiter, M., Gaida, T., Katinger, H. and Rauschert, B. 1991. Austrian Patent A1322/91.

  24. Weigang, F., Reiter, M., Jungbauer, A. and Katinger, H.W.D. 1989. High-performance liquid chromatographic determination of metabolic products for fermentation control of mammalian cell culture: analysis of carbohydrates and organic acids in addition to orthophosphate using refractive index and UV detectors. J. of Chromatography 497: 59–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, M., Blüml, G., Gaida, T. et al. Modular Integrated Fluidized Bed Bioreactor Technology. Nat Biotechnol 9, 1100–1102 (1991). https://doi.org/10.1038/nbt1191-1100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1191-1100

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing