Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of functional ion-channel tools by E3 targeting

Abstract

Here we describe a strategy for generating ion-channel inhibitors. It takes advantage of antibody specificity combined with a pattern recognition approach that targets the third extracellular region (E3) of a channel. To test the concept, we first focused on TRPC5, a member of the transient receptor potential (TRP) calcium channel family, the study of which has been hindered by poor pharmacological tools. Extracellular application of E3-targeted anti-TRPC5 antibody led to a specific TRPC5 inhibitor, enabling TRPC5 to be distinguished from its closest family members, and TRPC5 function to be explored in a relatively intractable physiological system. E3 targeting was further applied to voltage-gated sodium channels, leading to discovery of a subtype-specific inhibitor of NaV1.5. These examples illustrate the potential power of E3 targeting as a systematic method for producing gene-type specific ion-channel inhibitors for use in routine assays on cells or tissues from a range of species and having therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E3 targeting.
Figure 2: TRPC5 inhibitor.
Figure 3: Physiological application.
Figure 4: Generalization to sodium channels.

Similar content being viewed by others

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Tamm, I., Dorken, B. & Hartmann, G. Antisense therapy in oncology: new hope for an old idea? Lancet 358, 489–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Mak, T.W., Penninger, J.M. & Ohashi, P.S. Knockout mice: a paradigm shift in modern immunology. Nat. Rev. Immunol. 1, 11–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zan, Y. et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat. Biotechnol. 21, 645–651 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Vennekamp, J. et al. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol. Pharmacol. 65, 1364–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kaczorowski, G.J., Knaus, H.G., Leonard, R.J., McManus, O.B. & Garcia, M.L. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28, 255–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Li, R.A. & Tomaselli, G.F. Using the deadly mu-conotoxins as probes of voltage-gated sodium channels. Toxicon 44, 117–122 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Triggle, D.J. Drug targets in the voltage-gated calcium channel family: why some are and some are not. Assay Drug Dev. Technol. 1, 719–733 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mohler, P.J. et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. USA 101, 17533–17538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ong, A.C. & Wheatley, D.N. Polycystic kidney disease–the ciliary connection. Lancet 361, 774–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Rogawski, M.A. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci. 23, 393–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Tsavaler, L., Shapero, M.H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  16. Vandenberg, J.I., Walker, B.D. & Campbell, T.J. HERG K+ channels: friend and foe. Trends Pharmacol. Sci. 22, 240–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Wehrens, X.H. et al. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I–II linker in inactivation gating. Hum. Mutat. 21, 552 (2003).

    Article  PubMed  Google Scholar 

  18. Wood, J.N., Boorman, J.P., Okuse, K. & Baker, M.D. Voltage-gated sodium channels and pain pathways. J. Neurobiol. 61, 55–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Utku, N. et al. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 9, 509–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Dumoulin, M. et al. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424, 783–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Harris, M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol. 5, 292–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Roque, A.C., Lowe, C.R. & Taipa, M.A. Antibodies and genetically engineered related molecules: production and purification. Biotechnol. Prog. 20, 639–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Sanz, L., Blanco, B. & Alvarez-Vallina, L. Antibodies and gene therapy: teaching old 'magic bullets' new tricks. Trends Immunol. 25, 85–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D.E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat. Neurosci. 6, 837–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zeng, F. et al. Human TRPC5 channel activated by a multiplicity of signals in a single cell. J. Physiol. (Lond.) 559, 739–750 (2004).

    Article  CAS  Google Scholar 

  28. Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Flemming, R., Cheong, A., Dedman, A.M. & Beech, D.J. Discrete store-operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. J. Physiol. (Lond.) 543, 455–464 (2002).

    Article  CAS  Google Scholar 

  30. Flemming, R., Xu, S.Z. & Beech, D.J. Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. Br. J. Pharmacol. 139, 955–965 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Catterall, W.A., Goldin, A.L. & Waxman, S.G. International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. 55, 575–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Alexander, S.P., Mathie, A. & Peters, J.A. Guide to receptors and channels, 1st edition. Br. J. Pharmacol. 141 suppl. Suppl. 1, S1–126 (2004).

    PubMed  Google Scholar 

  33. Meiri, H., Sammar, M. & Schwartz, A. Production and use of synthetic peptide antibodies to map region associated with sodium channel inactivation. Methods Enzymol. 178, 714–739 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Wyatt, C.N. et al. Voltage-dependent binding and calcium channel current inhibition by an anti-alpha 1D subunit antibody in rat dorsal root ganglion neurones and guinea-pig myocytes. J. Physiol. (Lond.) 502, 307–319 (1997).

    Article  CAS  Google Scholar 

  35. Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Salfeld, J.G. Use of new biotechnology to design rational drugs against newly defined targets. Best Pract. Res. Clin. Rheumatol. 18, 81–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Grunwald, V. & Hidalgo, M. Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J. Natl. Cancer Inst. 95, 851–867 (2003).

    Article  PubMed  Google Scholar 

  38. Xu, S.Z. & Beech, D.J. TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ. Res. 88, 84–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, B.Y., Ma, W. & Huang, X.Y. Specific antibodies to the external vestibule of voltage-gated potassium channels block current. J. Gen. Physiol. 111, 555–563 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosado, J.A., Brownlow, S.L. & Sage, S.O. Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J. Biol. Chem. 277, 42157–42163 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Ahmmed, G.U. et al. Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J. Biol. Chem. 279, 20941–20949 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Montell, J. Putney, Y. Mori, A. Srivastava and T. Zimmer for TRPC1, TRPC4, TRPC5, NaV1.4/5 cDNAs, and A.N. Bateson and J. Colyer for critical reading of the manuscript. The work was supported by the Wellcome Trust and British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Beech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, SZ., Zeng, F., Lei, M. et al. Generation of functional ion-channel tools by E3 targeting. Nat Biotechnol 23, 1289–1293 (2005). https://doi.org/10.1038/nbt1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing