Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation

Abstract

Whole-genome mRNA quantitation can be used to identify the genes that are most responsive to environmental or genotypic change. By searching for mutually similar DNA elements among the upstream non-coding DNA sequences of these genes, we can identify candidate regulatory motifs and corresponding candidate sets of coregulated genes. We have tested this strategy by applying it to three extensively studied regulatory systems in the yeast Saccharomyces cerevisiae: galactose response, heat shock, and mating type. Galactose-response data yielded the known binding site of Gal4, and six of nine genes known to be induced by galactose. Heat shock data yielded the cell-cycle activation motif, which is known to mediate cell-cycle dependent activation, and a set of genes coding for all four nucleosomal proteins. Mating type α and a data yielded all of the four relevant DNA motifs and most of the known a- and α-specific genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

The ENCODE Project Consortium, Michael P. Snyder, … Richard M. Myers

References

  1. Pennisi, E. 1997. Laboratory workhorse decoded. Science 277: 1432–1434.

    Article  CAS  Google Scholar 

  2. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M. et al. 1997. The complete genome sequence of Escherichla coli K-12. Science 277: 1453–1474.

    Article  CAS  Google Scholar 

  3. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldman, H. et al. 1996. Life with 6000 genes. Science 274: 563–567.

    Article  Google Scholar 

  4. Chen, P., Ailion, M., Bobik, T., Stormo, G. and Roth, J. 1995. Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J. Bacteriol. 177: 5401–5410.

    Article  CAS  Google Scholar 

  5. Chuang, S.E., Daniels, D.L. and Blattner, F.R. 1993. Global regulation of gene expression in Escherichia coli. J. Bacteriol. 175: 2026–2036.

    Article  CAS  Google Scholar 

  6. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  CAS  Google Scholar 

  7. Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S. et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14: 1675–1680.

    Article  CAS  Google Scholar 

  8. DeRisi, J., Penland L., Brown, P.O., Bittner, M.L., Mertzer, P.S., Ray, M. et al. 1996. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14: 457–460.

    Article  CAS  Google Scholar 

  9. Wodicka L., Dong, H., Mittmann, M., Ho, M.-H., and Lockhart, D.J. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 15: 1359–1366.

    Article  CAS  Google Scholar 

  10. Muhlrad, D., Decker, C.J. and Parker, R. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15: 2145–2156.

    Article  CAS  Google Scholar 

  11. Jacobson, A. and Peltz, S.W. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–739.

    Article  CAS  Google Scholar 

  12. Lipman, D.J. 1997. Making (anti)sense of non-coding sequence conservation. Nucleic Acids. Res. 25: 3580–3583.

    Article  CAS  Google Scholar 

  13. Freeh, K., Quandt, K. and Werner, T. 1997. Software for the analysis of DNA sequence elements of transcription. CABIOS 13: 89–97.

    Google Scholar 

  14. Bailey, T.L. and Elkan, C. 1995. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning Journal 21: 51–83.

    Google Scholar 

  15. Neuwald, A.F., Liu, J.S. and Lawrence, C.E. 1995. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 4: 1618–1632.

    Article  CAS  Google Scholar 

  16. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262: 208–214.

    Article  CAS  Google Scholar 

  17. Lohr, D., Venkov, P. and Zlatanova, J. 1995. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9: 777–787.

    Article  CAS  Google Scholar 

  18. Schneider, T.D. and Stephens, R.M. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097–6100.

    Article  CAS  Google Scholar 

  19. Freeman, K.B., Karns, L.R., Lutz, K.A. and Smith, M.M. 1992. Histone H3 transcription in Saccharomyces cerevisiae is controlled by multiple cell cycle activation sites and a constitutive negative regulatory element. Mol. Cell. Biol. 12: 5455–5463.

    Article  CAS  Google Scholar 

  20. Osley, M.A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60: 827–861.

    Article  CAS  Google Scholar 

  21. Breeden, L. 1996. Start-specific transcription in yeast. Curr. Top. Microbiol. Immunol. 208: 95–127.

    CAS  PubMed  Google Scholar 

  22. Mclnerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P. and Breeden, L.L. 1997. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1 -specific transcription. Genes Dev. 11: 1277–1288.

    Article  Google Scholar 

  23. Herskowitz, I., Rine, J. and Strathern, J. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, pp. 583–656, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  24. Johnston, M. and Carlson, M. 1992. Regulation of carbon and phosphate utilization, pp. 193–281 in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  25. Craig, E.A. 1992. The heat-shock response of Saccharomyces cerevisiae , pp. 501–537, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  26. Schmitt, A.P. and McEntee, K., 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 5777–5782.

    Article  CAS  Google Scholar 

  27. Rowley, A., Johnston, G.C., Butler, B., Wemer-Washburne, M. and Singer, R.A. 1993. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 1034–1041.

    Article  CAS  Google Scholar 

  28. Vashee, S., Xu, H., Johnston, S.A. and Kodadek, T. 1993. How do “Zn2 cys6” proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo. J. Biol. Chem. 268: 24699–24706.

    CAS  PubMed  Google Scholar 

  29. Cherry, J.M., Adler C., Ball, C., Chervitz, S.A., Dwight, S.S., Hester, E.T. et al. 1998. SGD: saccharomyces genome database. Nucleic Acids Res. 26: 73–79.

    Article  CAS  Google Scholar 

  30. Ni, H.T. and LaPorte, D.C. 1995. Response of a yeast glycogen synthase gene to stress. Mol. Microbiol. 16: 1197–1205.

    Article  CAS  Google Scholar 

  31. Sprague, G.F. and Thorner, J.W. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae, pp. 657–744, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  32. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L. et al. 1998. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci USA 95: 334–339.

    Article  CAS  Google Scholar 

  33. Winston F., Dollard, C., and Ricupero-Hovasse, S.L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11 53–55.

    Article  CAS  Google Scholar 

  34. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B. et al. 1996. Life with 6000 genes. Science 274: 563–567.

    Article  Google Scholar 

  35. Miller, M.J., Xuong, N.H. and Geiduschek, E.P. 1982. Quantitative analysis of the heat shock response of Saccharomyces cerevisiae. J. Bacteriol. 151: 311–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wenzel, T.J., Teunissen, A.W., and de Steensma, H.Y. 1995. PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883–884.

    Article  CAS  Google Scholar 

  37. Berg, O.G. and von Hippel, P.H. 1987. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 193: 723–750.

    Article  CAS  Google Scholar 

  38. Liu, J.S., Neuwald, A.F, and Lawrence, C.E. 1995. Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J. Amen Stat Assoc. 90: 1156–1170.

    Article  Google Scholar 

  39. http://arep.med.harvard.edu/mrnadata

  40. Wingender, E., Kel, A.E., Kel, O.V., Karas, H., Heinemeyer, T. et al. 1997. TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation. Nucleic Acids Res. 25: 265–268.

    Article  CAS  Google Scholar 

  41. Quandt, K., Frech, K., Karas, H., Wingender, E. and Werner, T. 1995. MatInd and matInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23: 4878–4884.

    Article  CAS  Google Scholar 

  42. Simon J.A. and Lis, J.T. 1987. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 15: 5971–2988.

    Google Scholar 

  43. Schuller C., Brewster, J.L., Alexander, M.R., Gustin, M.C., and Ruis, H. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13: 4382–4389.

    Article  CAS  Google Scholar 

  44. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. et al. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15: 2227–2235.

    Article  CAS  Google Scholar 

  45. Tavazoie, S. and Church, G.M. 1998. Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. Nat. Biotechnol. 16: 566–571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, F., Hughes, J., Estep, P. et al. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16, 939–945 (1998). https://doi.org/10.1038/nbt1098-939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing