Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Transgenic pigs produce functional human factor VIII in milk

Abstract

Deficiency or abnormality of coagulation factor VIII (FVIII) causes a bleeding disorder called hemophilia A. Treatment involves FVIII concentrates prepared from pooled human plasma or recombinant FVIII (rFVIII) prepared from mammalian cell culture. The cost of highly purified FVIII or rFVIII is a major factor in hemophilia therapy and restricts prophylaxis. We have sought to generate a new source of rFVIII by targeting expression of the human FVIII cDNA to the mammary gland of transgenic pigs using the regulatory sequences of the mouse whey acidic protein gene. The identity of processed heterodimeric rFVIII was confirmed using specific antibodies, by thrombin digestion and activity assays. The secretion of as much as 2.7 μg/ml of rFVIII in milk was over tenfold higher than in normal plasma. Up to 0.62 U/ml of rFVIII was detected in an assay in which rFVIII restored normal clotting activity to FVIII-deficient human plasma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vehar, G.A., Keyt, B., Eaton, D., Rodriguez, H., O'Brien, D.P., Rotblat, F. et al. 1984. Structure of human factor VIII. Nature 312: 337 342.

    Article  CAS  PubMed  Google Scholar 

  2. Toole, J.J., Knopf, J.L. and Wozney, J.M. 1984. Molecular cloning of a cDNA encoding human antihemophilic factor. Nature 312: 342 347.

    Article  CAS  PubMed  Google Scholar 

  3. Wood, W.I., Gapon, D.J., Simonsen, C.C., Eaton, D.L., Gitschier, J., Keyt, B. et al. 1984. Expression of active human factor VIII from recombinant DNA clones. Nature 312: 330 337.

    Article  CAS  PubMed  Google Scholar 

  4. Hoyer, L.W. 1993. Characterization of dysfunctional factor VIII molecules. Methods EnzymoL. 222: 169 176.

    Article  CAS  PubMed  Google Scholar 

  5. Weiss, H.J., Sussman, I.I. and Hoyer, L.W. 1977. Stabilization of factor VI11 in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIM and in patients with von Willebrahd's disease. J. Clin. Invest. 60: 390 404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ehmann, W.C., Eyster, M.E., Aledort, L.M. and Goedert, J.J. 1995. Causes of death in hemophilia. Nature 378: 124.

    Article  CAS  PubMed  Google Scholar 

  7. Gitschier, J., Wood, W.I., Goralka, T.M., Wion, K.L., Chen, E.Y., Eaton, D.H. et al. 1984. Characterization of the human factor VIII gene. Nature 312: 326 330.

    Article  CAS  PubMed  Google Scholar 

  8. Eaton, D.L., Wood, W.I., Eaton, D., Hass, P.E., Hollingshead, P., Wion, K., Mather, et al. 1986. Construction and characterization of an active factor VIII variant lacking the central one-third of the molecule. Biochem. 25: 8343 8347.

    Article  CAS  Google Scholar 

  9. Toole, J.J., Pittman, D.D., Orr, E.C., Murtha, P., Wasley, L.C. and Kaufman, R.J. 1986. A large region (˜95 kD) of human factor VIII is dispensable for in vitro procoagulant activity.Proc. Natl. Acad. Sci. USA 83: 5939 5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaufman, R.J., Wasley, L.C. and Dorner, A.J. 1988. Synthesis, processing and secretion of recombinant human factor VIII expressed in mammalian cells. J. Biol. Chem. 263: 6352 6362.

    CAS  PubMed  Google Scholar 

  11. Kaufman, R.J., Wasley, L.C., Davies, M.V., Wise, R.J., Israel, D.I. and Dorner, A.J. 1989. Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol. Cell Biol. 9: 1233 1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch, C.M., Israel, D.I., Kaufman, R.J. and Miller, A.D. 1993. Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production. Hum. Gene Ther. 4: 259 272.

    Article  CAS  PubMed  Google Scholar 

  13. Koeberl, D.D., Halbert, C.L., Krumm, A. and Miller, A.D. 1995. Sequences within the coding regions of clotting factor VIII and CFTR block transcriptional elongation. Hum. Gene Ther. 6: 469 479.

    Article  CAS  PubMed  Google Scholar 

  14. Hoeben, R.C., Fallaux, F.J., Cramer, S.J. van den Wollenberg, D.J.M., van Ormondt, H., Briet, E. et al. 1995. Expression of the blood-clotting factor VIII cDNA is repressed by a transcriptional silencer located in its coding region. Blood 86: 2447 2454.

    Google Scholar 

  15. Koedam, J.A., Meijers, J.C.M., Sixma, J.J. and Bouma, B.N. 1988. Inactivation of human factor VIII by activated protein C. Cofactor activity of protein S and protective effect of von Willebrand factor. J. Clin. Invest. 82: 1236 1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lubon, H., Paleyanda, R.K., Velander, W.H. and Drohan, W.N. 1996. Blood proteins from transgenic animal bioreactors. Transfus. Med. Revs. X: 131 143.

    Article  Google Scholar 

  17. Campbell, S.M., Rosen, J.M., Hennighausen, L.G., Strech-Jurk, U. and Sippel, A.E. 1982. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12: 8685 8697.

    Article  Google Scholar 

  18. Fulcher, C.A. and Zimmerman, T.S. 1982. Characterization of the human factor VIII procoagulant protein with a heterologous precipitating antibody. Proc. Natl. Acad. Sci. USA 79: 1648 1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eaton, D., Rodriguez, H. and Vehar, G.A. 1986. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochem. 25: 505 512.

    Article  CAS  Google Scholar 

  20. Fulcher, C.A., Roberts, J.R. and Zimmerman, T.S. 1983. Thrombin proteolysis of purified factor VIII. Correlation of activation with generation of a specific polypeptide. Blood 61: 807 811.

    CAS  PubMed  Google Scholar 

  21. Pittman, D.D. and Kaufman, R.J. 1988. Proteolytic requirements for thrombin activation of ariti-hemophilic factor (factor VIII). Proc. Natl. Acad. Sci. USA 8: 2429 2433.

    Article  Google Scholar 

  22. Rosen, S. 1984. Assay of factor VIII:C with a chromogenic substrate. Scand. J. Haematol. 33 (suppl. 40): 139 145.

    Article  Google Scholar 

  23. Over, J. 1984. Methodology of the one-stage assay of factor VIII (VIII:C). Scand. J. Haematol. 41: 13 24.

    CAS  Google Scholar 

  24. Clark, A.J., Bessos, H., Bishop, J.O., Brown, P., Harris, S., Lathe, R. et al. 1989. Expression of human anti-hemophilic factor IX in the milk of transgenic sheep. Bio/Technology 7: 487 492.

    CAS  Google Scholar 

  25. Lee, T., Drohan, W.N. and Lubon, H. 1995. Proteolytic processing of human protein C in swine mammary gland. J. Biochem. 118: 81 87.

    Article  CAS  PubMed  Google Scholar 

  26. Yarus, S., Greenberg, N.M., Wei, Y., Whitsett, J.A., Weaver, T.E. and ROsen, J.M. 1997. Secretion of unprocessed human surfactant protein B in the milk of transgenic mice. Transgenic Res. 6: 51 57.

    Article  CAS  PubMed  Google Scholar 

  27. Drohan, W.N., Zhang, D.-W., Paleyanda, R.K., Chang, R., Wroble, M., Velander, W. et al. 1994. Inefficient processing of human protein C in the mouse mammary gland. Transgenic Res. 3: 355 364.

    Article  CAS  PubMed  Google Scholar 

  28. Denman, J., Hayes, M., O'Day, C., Edmunds, T., Bartlett, C., Hirani, S. et al. 1991. Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: Purification and characterization Of the recombinant enzyme. Bio/Technology 9: 839 >843.

    CAS  Google Scholar 

  29. Mikkelsen, T.R., Brandt, J., Larsen, H.J., Larsen, B.B., Poulsen, K., Ingerslev, J. et al. 1992. Tissue-specific expression in the salivary glands of transgenic mice. Nucl. Acids Res. 20: 2249 2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pittius, C.W., Hennighausen, L., Lee, E., Westphal, H., Nicol, E., Vitale, J. et al. 1988. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. Natl. Acad. Sci. USA 85: 5874 5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy, V.B., Vitale, J., Wei, C., Montoya-Zavala, M., Stice, S.L., Balise, J. et al. 1991. Expression of human growth hormone in the milk of transgenic mice. Animal Biotechnoi. 2: 15 29.

    Article  CAS  Google Scholar 

  32. Günzburg, W.H., Salmons, B., Zimmermann, B., Muller, M., Erfle, V. and Brem, G. 1991. A mammary-specific promoter directs expression of growth hormone not Only to the mammary gland, but also to Bergman glia cells in transgenic mice.Mol. Endocrinol. 5: 123 133.

    Article  PubMed  Google Scholar 

  33. Wen, J., Kawamata, Y., Tojo, H., Tanaka, S. and Tachi, C. 1995. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Mol. Reprod. Dev. 41: 399 406.

    Article  CAS  PubMed  Google Scholar 

  34. Wall, R.J., Pursel, V.G., Shamay, A., McKnight, R.A., Pittius, C.W. and Hennighausen, L. 1991. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci. USA 88: 1696 1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drohan, W.N., Wilkins, T.D., Latimer, E., Zhou, D., Velander, W., Lee, T.K. et al. 1994. A scalable method for the purification of recombinant human protein C from the milk of transgenic swine, pp. 501 507 in Advances in bioprocess engineering. Galindo, E. and Ramirez, O.T. (eds.) Kluwer Academic Publishers,.Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  36. Velander, W.H., Johnson, J.L., Page, R.L., Russell, C.G., Subramanian, A., Wilkins, T.D. et al. 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA 89: 12003 12007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wall, R.J., Pursel, V.G., Hammer, R.E. and Brinster, R.L. 1985. Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol. Reprod. 32: 645 651.

    Article  CAS  PubMed  Google Scholar 

  38. Fulcher, C.A., Roberts, J.R., Holland, L.Z. and Zimmerman, T.S. 1985. Human factor VIII procoagulant protein. Monoclonal antibodies define precursor-product relationships and functional epitopes. J. Clin. Invest. 76: 117 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lubin, I.M., Healey, J.F., Scandelia, D., Runge, M.S. and Lollar, P. 1994. Elimination of a major inhibitor epitope in Factor VIII. J. Biol. Chem. 269: 8639 8641.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Lubon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paleyanda, R., Velander, W., Lee, T. et al. Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol 15, 971–975 (1997). https://doi.org/10.1038/nbt1097-971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing