Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Non–Neutralizing Monoclonal Antibodies Against RAS GTPase–Activating Protein: Production, Characterization and Use in an Enzyme Immunometric Assay

Abstract

We studied several monoclonal antibodies (mAbs) raised against the 100 kD Ras GTPase activating protein (p100–GAP), which was purified from human placenta. These antibodies recognized p120–GAP and p100–GAP in native and in denatured forms. The most reactive, GP15 and GP200, both recognized distinct epitopes and did not neutralize GTPase stimulatory activity. These two mAbs were selected for a two–site enzyme immunoassay, using covalent conjugates of the antibodies coupled to the tetrameric form of acetylcholinesterase as tracer. This assay was used to quantify Ras–GAP in both normal and tumor tissues and cell extracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bourne, H.R., Sanders, D.A. and McCormick, F. 1991. GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.

    Article  CAS  Google Scholar 

  2. Paterson, H., Reeves, B., Brown, R., Hall, A., Furth, M., Bos, J., Jones, P. and Marshall, C. 1987. Activated N-ras controls the transformed phenotype of HT1080 human fibrosarcoma cells. Cell 51: 803–812.

    Article  CAS  Google Scholar 

  3. Trahey, M. and McCormick, F. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238: 542–545.

    Article  CAS  Google Scholar 

  4. Wolfman, A. and Macara, I. 1990. A cytosolic protein catalyzes the release of GDP from p2l ras . Science 248: 67–69.

    Article  CAS  Google Scholar 

  5. Downward, J., Reihl, R., Wu, L. and Weinberg, R.A. 1990. Identification of a nucleotide exchange-promoting activity for p21 ras . Proc. Natl. Acad. Sci. USA 87: 5998–6002.

    Article  CAS  Google Scholar 

  6. Tsai, M., Yu, C. and Stacey, D.W. 1990. A cytoplasmic protein inhibits the GTPase activity of H-ras in a phospholipid-dependent manner. Science 250: 982–985.

    Article  CAS  Google Scholar 

  7. Vogel, U.S., Dixon, R.A.F., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick, E.M., Sigal, I.S. and Gibbs, J.B. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335: 90–93.

    Article  CAS  Google Scholar 

  8. Gibbs, J.B., Schaber, M.D., Allard, W.J., Sigal, I.S. and Scolnick, E.M. 1988. Purification of ras GTPase activating protein from bovine brain. Proc. Natl Acad. Sci. USA 85: 5026–5030.

    Article  CAS  Google Scholar 

  9. Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G.A., Ladner, M., Long, C.M., Crosier, W.J., Watt, K., Koths, K. and McCormick, F. 1988. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242: 1697–1700.

    Article  CAS  Google Scholar 

  10. Xu, G., OConnell, P., Viskochil, D., Cawthon, R., Robertson, M., Culver, M., Dunn, D., Stevens, J., Gesteland, R., White, R. and Weiss, R. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62: 599–608.

    Article  CAS  Google Scholar 

  11. Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O'Connell, P., Cawthon, R.M., Innis, M.A. and McCormick, F. 1990. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849.

    Article  CAS  Google Scholar 

  12. Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851–859.

    Article  CAS  Google Scholar 

  13. Tanaka, K., Nakafuku, M., Satoh, T., Marshall, M.S., Gibbs, J.B., Matsumoto, K., Kaziro, Y. and Toh-e, A. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807.

    Article  CAS  Google Scholar 

  14. Tanaka, K., Lin, B.K., Wood, D.R. and Tamanoi, F. 1991. IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc. Natl. Acad. Sci. USA 88: 468–472.

    Article  CAS  Google Scholar 

  15. Cales, C., Hancock, J.F., Marshall, C.J. and Hall, A. 1988. The cytoplasmic protein GAP is implicated as the target for the regulation by the ras gene product. Nature 332: 548–551.

    Article  CAS  Google Scholar 

  16. Adari, H., Lowy, D.R., Willumsen, B.M., Red, C.J. and McCormick, F. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240: 518–521.

    Article  CAS  Google Scholar 

  17. Yatani, A., Okabe, K., Polakis, P., Halenbeck, R., McCormick, F. and Brown, A.M. 1990. ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61: 769–776.

    Article  CAS  Google Scholar 

  18. Martin, G.A., Yatani, A., Clark, R., Conroy, L., Polakis, P., Brown, A.M. and McCormick, F. 1991. GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255: 192–194.

    Article  Google Scholar 

  19. Dominguez, I., Marshall, M.S., Gibbs, J., GarciadeHerreros, A., Cornet, M.E., Graziani, G., Diaz-Meco, M.T., Johansen, T., McCormick, F. and Moscat, J. 1991. Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C. EMBO J. 10: 3215–3220.

    Article  CAS  Google Scholar 

  20. Chung, D.L., Brandtrauf, P., Murphy, R.B., Nishimura, S., Yamaizumi, Z., Weinstein, I.B. and Pincus, M.R. 1991. A peptide from the GAP-binding domain of the ras-p21 protein as well as azatyrosine block ras-induced maturation of Xenopus oocytes. Biochem. Biophys. Res. Commun. 181: 1378–1384.

    Article  CAS  Google Scholar 

  21. Nishi, T., Lee, P.S.Y., Oka, K., Levin, V.A., Tanase, S., Morino, Y. and Saya, H. 1991. Differential expression of two types of the neurofibromatosis type-1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 6: 1555–1559.

    CAS  Google Scholar 

  22. Anderson, D., Koch, C.A., Grey, L., Ellis, C., Moran, M.F. and Pawson, T. 1990. Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250: 979–985.

    Article  CAS  Google Scholar 

  23. Zhang, K., DeClue, J.E., Vass, W.C., Papageorge, A.G., McCormick, F. and Lowy, D.R. 1990. Suppression of c-ras transformation by GTPase-activating protein. Nature 346: 754–756.

    Article  CAS  Google Scholar 

  24. Mayer, B., Jackson, P.K. and Baltimore, D. 1991. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl. Acad. Sci. USA 88: 627–631.

    Article  CAS  Google Scholar 

  25. Brott, B.K., Decker, S., OBrien, M.C. and Jove, R. 1991. Molecular features of the viral and cellular Src kinases involved in interactions with the GTPase-activating protein. Mol. Cell. Biol. 11: 5059–5067.

    Article  CAS  Google Scholar 

  26. DeClue, J.E., Zhang, K., Redford, P., Vass, W.C. and Lowy, D.R. 1991. Suppression of src transformation by overexpression of full-length GTPase-activating protein (GAP) or of the GAP C terminus. Mol. Cell. Biol. 11: 2819–2825.

    Article  CAS  Google Scholar 

  27. Nori, M., Vogel, U.S., Gibbs, J.B. and Weber, M.J. 1991. Inhibition of v-src-induced transformation by a GTPase-activatin protein. Mol. Cell. Biol. 11: 2812–2818.

    Article  CAS  Google Scholar 

  28. Bollag, G. and McCormick, F. 1991. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351: 576–579.

    Article  CAS  Google Scholar 

  29. Cichowski, K., McCormick, F. and Brugge, J.S. 1992. p21 ras GAP association with Fyn, Lyn, and Yes in thrombin-activated platelets. J. Biol. Chem. 267: 5025–5028.

    CAS  PubMed  Google Scholar 

  30. Reinstein, J., Schlichting, I., Frech, M., Goody, R.S. and Wittinghofer, A. 1991. p21 with a phenylalanine 28 — > leucine mutation reacts normally with the GTPase activating protein GAP but nevertheless has transforming properties. J. Biol. Chem. 266: 17700–17706.

    CAS  PubMed  Google Scholar 

  31. Caruelle, D., Grassi, J., Courty, J., Groux-Muscatelli, B., Pradelles, P., Barritault, D. and Caruelle, J.P. 1988. Development and testing of radio and enzyme immunoassays for acidic fibroblast growth factor (aFGF). Anal. Biochem. 173: 328–339.

    Article  CAS  Google Scholar 

  32. Grassi, J., Frobert, Y., Lamourette, P. and Lagoutte, B. 1988. Screening of monoclonal antibodies using antigens labelled with acetylcholinesterase: Application to the peripheral proteins of photosystem 1. Anal. Biochem. 168: 436–450.

    Article  CAS  Google Scholar 

  33. Grassi, J., Frobert, Y., Pradelles, P., Chercuite, F., Gruaz, D., Dayer, J.M. and Poubelle, P.E. 1989. Production of monoclonal antibodies against interleukins 1α and 1β Development of two enzyme immunometric assays using acetylcholinesterase and their application to biological media. J. Immunol. Methods. 123: 193–210.

    Article  CAS  Google Scholar 

  34. Halenbeck, R., Crosier, W.J., Clark, R., McCormick, F. and Koths, K. 1990. Purification, characterization, and Western blot analysis of human GTPase-activating protein from native and recombinant sources. J. Biol. Chem. 265: 21922–21928.

    CAS  PubMed  Google Scholar 

  35. Boone, C., Sasaki, M. and McKee, W. 1965. Characterization of an in vitro strain of Ehrlich-Lettre ascites carcinoma subjected to many periodic mouse passages. J. Natl. Cancer Inst. 43: 725–740.

    Google Scholar 

  36. Schneider, C., Newman, R.A., Sutherland, D.R., Asser, U. and Greaves, M.F. 1982. A one step purification of membrane proteins using a high efficiency immunomatrix. J. Biol. Chem. 257: 10766–10769.

    CAS  Google Scholar 

  37. Ellman, G.L., Courtney, K.D., Andres, V. and Featherstone, R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95.

    Article  CAS  Google Scholar 

  38. Pradelles, P., Grassi, J. and Maclouf, J. 1985. Enzyme immunoassays of eicosanoids using acetylcholinesterase as label. Anal. Chem. 57: 1170–1173.

    Article  CAS  Google Scholar 

  39. Reik, L.M., Maines, S.L., Ryan, D.E., Levin, W., Bandiera, S. and Thomas, P.E. 1987. A simple, non-chromatographic purification procedure for monoclonal antibodies. Isolation of monoclonal antibodies against cytochrome P450 isozymes. J. Immunol. Methods 100: 123.

    Article  CAS  Google Scholar 

  40. Larue, C., Chateigner, C., Gautier, P., Planchenault, J. and Leger, J. 1988. Optimisation of mouse IgG fragmentation techniques in the selection of monoclonal antibodies for myocardial infarct imaging, 129–138. In: Radiolabeled Monoclonal Antibodies for Imaging and Therapy. Srivastava, S. C. (Ed.). Plenum Publishing, London, UK.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollat, P., Zhang, G., Frobert, Y. et al. Non–Neutralizing Monoclonal Antibodies Against RAS GTPase–Activating Protein: Production, Characterization and Use in an Enzyme Immunometric Assay. Nat Biotechnol 10, 1151–1156 (1992). https://doi.org/10.1038/nbt1092-1151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1092-1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing