Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High Level Expression of Streptokinase in Escherichia Coli

Abstract

Streptokinase (SK), which activates human plasminogen by promoting its conversion to plasmin, is normally obtained from β–hemolytic streptococci. Treatment with SK is an effective therapy for improving survival and preserving left ventricular function after coronary thrombosis. We report the cloning, expression in E. coli to levels of 25% of the total cell protein, and characterization of a novel SK (SKC–2) gene, the product of which is functionally equivalent to the naturally–derived protein. The availability of a recombinant streptokinase (rSK) in high yield and purity offers a potentially attractive alternative source of this important therapeutic agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taylor, F.B. and Comp, P.C. 1978. Biochemestry of streptokinase, 137. In: Fibrinolytics and Antifibrinolytics. F. Mark-Wardt (Ed.).Springer-Verlag, NY.

    Chapter  Google Scholar 

  2. Huang, T.T., Malke, H. and Ferretti, J.J. 1989. The streptokinase gene of group A streptococci: cloning expression in Escherichia coli, and sequence analysis. Mol. Biol. 2 (3): 197–205.

    Google Scholar 

  3. Radek, J.T. and Castellino, F.J. 1989. Conformational properties of streptokinase. J. Biol. Chem. 264 (17): 9915–9922.

    CAS  PubMed  Google Scholar 

  4. Paques, E.-P. 1986. Streptokinase or urokinase: The choice between them. Haemostasis 16 suppl. 3: 21–24.

    Google Scholar 

  5. Collen, D., Lijnen, H.R. and Verstraete, M. 1985. Thrombolysis: Biological and Therapeutic Properties of New Thrombolytic Agents. Churchill Livingstone, Edinburgh, UK.

    Google Scholar 

  6. White, H.D., Rivers, J.T., Maslowski, A.H. et al. 1989. Effect of intravenous streptokinase as compared with that of tissue plasminogen activator on left ventricular function after first myocardial infarction. N. Engl. J. Med. 320: 817–821.

    Article  CAS  Google Scholar 

  7. PRIMI Trial Study Group. 1989. Randomized double-blind trial of recombinant pro-urokinase against streptokinase in acute myocardial infarction. Lancet April 22: 863–868.

  8. Verstraete, M., Bernard, R., Bory, M. et al. 1985. Randomized trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Lancet 1: 842–847.

    Article  CAS  Google Scholar 

  9. Sheehan, F.H., Braunwald, E., Canner, P. et al. 1987. The effects of intravenous thrombolytic therapy on left ventricular function: a report on tissue-type plasminogen activator and streptokinase from the Thrombolysis in Myocardial Infarction (TIMI Phase I) trial. Circulation 75: 817–829.

    Article  CAS  Google Scholar 

  10. Magnani, B. Paims Group. 1988. The Plasminogen Activator Italian Multicenre Study: a comparison of intravenous single chain rt-PA versus streptokinase in acute myocardial infarction. Circulation 78: Suppl IV: IV-1207 (abstract).

  11. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI). 1987. Long-term effects of intravenous thrombolysis in acute myocardial infarction: final report of the GISSI study. Lancet 2: 871–874.

  12. ISIS-2 Collaborative Group. 1988. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2: 349–360.

  13. White, H.D., Norris, R.M., Brown, M.A. et al. 1987. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N. Eng.J. Med. 317: 850–855.

    Article  CAS  Google Scholar 

  14. The I.S.A.M. Study Group. 1986. A prospective trial of intravenous streptokinase in acute myocardial infarction (I.S.A.M.): mortality, morbidity, and infarct size at 21 days. N. Eng J. Med 314: 1465–1471.

  15. Kennedy, J.W., Martin, G.V., David, K.B. et al. 1988. The Western Washington intravenous streptokinase in acute myocardial infarction randomized trial. Circulation 77: 345–352.

    Article  CAS  Google Scholar 

  16. Rapaport, E. 1989. Thrombolytic agents in acute myocardial infarction. N. Eng. J. Med. 320: 861–864.

    Article  CAS  Google Scholar 

  17. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. 1992. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. The Lancet 339: 753–770.

  18. Malke, H., Roe, B. and Ferretti, J.J. 1985. Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34: 357–362.

    Article  CAS  Google Scholar 

  19. Campos, M., Ortega, M., Padrón, G., Estrada, M.P., de la Fuente, J. and Herrera, L. 1991. Cloning of coliphage-T4 gene pseT and high-level synthesis of polynucleotide kinase in Escherichia coli. Gene. 101: 127–131.

    Article  CAS  Google Scholar 

  20. Rodríguez, P., Hernández, L., Castro, A., de la Fuente, J. and Herrera, L. 1992. Purification of streptokinase by affinity chromatography on immobilized acilated human plasminogen. Biotechniques 7: 638–641.

    Google Scholar 

  21. Hernández, L., Rodríguez, P., Castro, A., Serrano, R., Rodriguez, M.P., Rubiera, R., Estrada, M.P., Pérez, A., de la Fuente, J. and Herrera, L. 1990. Determination of streptokinase activity by quantitative assay. Biotecnología Aplicada 7: 153–160.

    Google Scholar 

  22. Filberger, P. 1982. Chromogenic peptide substrates. Their use for the assay of factors in the fibrinolytic and plasma kallikreinin systems. Scand. J. Clin. Lab. Invest. 42 SuppL 162: 49–54.

    Google Scholar 

  23. British Pharmacopeia. 1980. Addendum 1986. Appendix XIV, A102–A103.

  24. Streptokinase injection. British Pharmacopeia. 1988. Appendix XIV E, 179–181.

  25. Chirstensen, L.R. 1949. Methods for measuring the activity of components on the streptoccocal fibrinolytic system and streptoccocal desoxyribonuclease. J. Clin. Invest. 28: 163–167.

    Article  Google Scholar 

  26. Walter, F., Siegel, M. and Malke, H. 1989. Nucleotide sequence of the streptokinase gene from a Streptococcus pyogenes type 1 strain. Nucl. Acids Res. 17: 1260.

    Google Scholar 

  27. Dillon, H.C. and Wannamaker, W. 1965. Physical and immunological differences among streptokinases. J. Exp. Med. 121: 351–371.

    Article  CAS  Google Scholar 

  28. Gerlach, D. and Kohler, W. 1979. Studies of the heterogeneity of streptokinases of different origins. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.Hyg.Abt. 1 Orig. Reihe A. 238: 336–349.

    Google Scholar 

  29. Gerlach, D. and Kohler, W. 1979. Studies of the heterogeneity of streptokinases. II. Communication: composition of amino acids and serological activity. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.Hyg.Abt. 1 Orig. Reihe A. 244: 210–221.

    CAS  Google Scholar 

  30. Gerlach, D. and Kohler, W. 1980. Studies of the heterogeneity of streptokinases. IV. Communication: evidence for isostreptokinase in Streptococcus pyogenes type 1. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.Hyg. Abt. 1 Orig. Reihe A 248: 446–454.

    Google Scholar 

  31. Weinstein, L. 1953. Antigenic dissimilarity of streptokinases. Proc. Soc. Exp. Biol. Med. 83: 689–691.

    Article  CAS  Google Scholar 

  32. Johnston et al. 1987. Abstr. Lancefield Int. Symp. Streptococci Streptococcal Dis.

  33. Müller, J., Reinert, H. and Malke, H. 1989. Streptokinase mutation relieving Escherichia coli K-12 (prlA4) of detriments caused by the wild type skc, gene. J. Bacteriol. 171: 2202–2208.

    Article  Google Scholar 

  34. Saiki, R., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N. 1985. Enzimatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1355.

    Article  CAS  Google Scholar 

  35. Chen, E.Y. and Seeburg, F.H. 1985. Supercoil sequencing: A fast and simple method for sequencing plasmid DNA. DNA 4: 165–170.

    Article  CAS  Google Scholar 

  36. Pérez, L., Vega, J., Chuay, C., Menéndez, A., Ubieta, R., Montero, M., Padrón, G., Silva, A., Santizo, C., Besada, V. and Herrera, L. 1990. Production and characterization of human gamma interferon from E. coli. Appl. Microbiol. Biotechnol. 33: 429–434.

    Article  Google Scholar 

  37. Towbin, H., Stahelin, T. and Gordon, J. 1979. Electrophoretic transfer of protein from polyacrilamide gels to nitrocellulose sheets. Proc. Natl Acad. Sci. USA 76: 4350–4354.

    Article  CAS  Google Scholar 

  38. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, M., Hernandez, L., Pérez, A. et al. High Level Expression of Streptokinase in Escherichia Coli. Nat Biotechnol 10, 1138–1142 (1992). https://doi.org/10.1038/nbt1092-1138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1092-1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing