Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toward a Unified Approach to Genetic Mapping of Eukaryotes Based on Sequence Tagged Microsatellite Sites

Abstract

The genomes of all eukaryotes appear to contain a special class of loci, termed microsatellites, which can serve, if sequenced and taken as the substrate for the polymerase chain reaction, as highly informative, locus-specific markers. By analogy to the “sequence tagged sites” recently proposed by Olsen et al.1 for standardizing the human physical gene map, these microsatellite markers are termed “sequence tagged micro satellite sites” (STMS). Genetic maps based on STMS will share with the Olsen physical maps the advantage that mapping vocabularies will be standardized to the DNA sequence base and that access to any particular locus will not require shipping or storing cloned probes. The species map will consist simply of a listing of nucleotide sequences. Reference populations for developing STMS maps can be chosen on the basis of biological or economic interest. It will not be necessary to maximize for genetic divergence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olson, M., Hood, L., Cantor, C., Botstein, D. 1989. A common language for physical mapping of the human genome. Science 245: 1434–1435.

    Article  CAS  PubMed  Google Scholar 

  2. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Solomon, E., Bodmer, W.F. 1979. Evolution of sickle variant gene. Lancet I, (8122): 923.

    Article  Google Scholar 

  4. Beckmann, J.S., Soller, M. 1988. Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor. Appl. Genet. 76: 228–236.

    Article  CAS  PubMed  Google Scholar 

  5. Kashi, Y., Hallerman, E.M., Soller, M. 1990. Marker-assisted selection of candidate sires for progeny testing programs. Animal Production.In press.

    Google Scholar 

  6. Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujumoto, E., Hoff, M., Kumlin, E., White, R. 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Article  CAS  PubMed  Google Scholar 

  7. Wong, A., Wilson, V., Jeffreys, A.J., Thein, S.L. 1986. Cloning a selected fragment from a human DNA “fingerprint”: Isolation of an extremely polymorphic minisatellite. Nucl. Ac. Res. 14: 4505–4616.

    Article  Google Scholar 

  8. Royle, N.J., Clarkson, R.E., Wong, Z. and Jeffreys, A.J. 1988. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352–360.

    Article  CAS  PubMed  Google Scholar 

  9. Saiki, R.K., Gelfand, D.H., Stoffe, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  CAS  PubMed  Google Scholar 

  10. White, T.J., Anrhein, N., Erlich, H.A. 1989. The polymerase chain reaction. Trends in Genetics 5: 185–189.

    Article  CAS  PubMed  Google Scholar 

  11. Vosberg, H.P. 1989. The polymerase chain reaction: An improved method for the analysis of nucleic acids. Hum. Genet. 83: 1–15.

    Article  CAS  PubMed  Google Scholar 

  12. Hamada, H., Petrino, M.G. and Kakunaga, T. 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465–6469.

    Google Scholar 

  13. Tautz, D. and Renz, M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zischler, H., Schafer, R. and Epplen, J.T. 1989. Non-radioactive oligonucleotide fingerprinting in the gel. Nucleic Acids Research 17: 4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirschoff, C. 1988. GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Calliphoridae). Chromosoma 96: 107–111.

    Article  Google Scholar 

  16. Schafer, R., Ali, S. and Epplen, J.T. 1986. The organization of the evolutionarily conserved GATA/GACA repeats in the mouse genome. Chromosoma 93: 502–510.

    Article  CAS  PubMed  Google Scholar 

  17. Vergnaud, G. 1989. Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res. 17: 7623–7630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Braaten, D.C., Thomas, J.R., Little, R.D., Dickson, K.R., Goldberg, I., Schlessinger, D., Ciccodicola, A. and D'Urso, M. 1988. Locations and contexts of sequences that hybridize to poly(dG-dT).(dC-dA) in mammalian ribosomal DNAs and two X-linked genes. Nucleic Acids Res. 16: 865–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Litt, M., Luty, J.A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J. Hum Genet. 44: 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smeets, H.J.M., Brunner, H.G., Ropers, H.H., Wieringa, B. 1989. Human Genet. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. 83: 245–251.

  21. Weber, J.L., May, P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerem, B., Rommens, J.M., Buchanan, J.A., Markeiwicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., Tsui, L. 1989. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  23. Rommens, J.M. Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J.R., Tsui, L., Collins, F.S. 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  24. Suthers, G.K., Callen, D.F., Hyland, V.J., Kozman, H.M., Baker, E., Eyre, H., Harper, P.S., Roberts, S.H., Hors-Cayla, M.C., Davies, K.E., Bell, M.V., Sutherland, G.R. 1989. A new DNA marker tightly linked to the Fragile X Locus (FRAXA). Science 246: 1298–1300.

    Article  CAS  PubMed  Google Scholar 

  25. Kashi, Y., Iraqi, F., Tikoschinsky, Y., Rudinsky, B., Nave, A., Beckmann, J.S., Friedmann, A., Soller, M. and Gruenbaum, Y. 1990. Poly(TG) uncovers a Y-specific fragment in bovine. Genomics 7: 31–36.

    Article  CAS  PubMed  Google Scholar 

  26. Li, M., Gyllensten, U.B., Cui, X., Saiki, R.K., Erlich, H.A., Arnheim, N. 1988. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335: 414–417.

    Article  CAS  PubMed  Google Scholar 

  27. Chang, D., Bowman, J.L., DeJohn, A.W., Lander, E.S., Meyrowitz, E.M. 1988. Restriction fragment length polymorphisms map for Arabidposis thaliana. Proc. Natl. Acad. Sci. USA 85: 6856–6860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gebhardt, D., Ritter, E., Debener, T., Schachtsnabel, U., Walkemeir, B., Uhrig, H., Salamini, F. 1989. RFLP analysis and linkage mapping in Solanum tubersosum. Theor. Appl. Genet. 78: 65–75.

    Article  CAS  PubMed  Google Scholar 

  29. Havey, J.J., Muehlbauer, F.J. 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor. Appl. Genet. 77: 395–401.

    Article  CAS  PubMed  Google Scholar 

  30. Helentjaris, T., Slocum, M., Wright, S., Schaefer, A., Nienhuis, J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 7561–769.

    Article  Google Scholar 

  31. Landry, B.S., Kesseli, R.V., Farrara, B., Michelmore, R.W. 1987. A genetic map of lettuce (Lactuca sativa) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116: 331–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Kush, G.S., Coffman, W.R., Tanksley, S.D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815–829.

    Article  CAS  PubMed  Google Scholar 

  33. Beckmann, J.S. and Soller, M. 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genetics 67: 35–43.

    Article  CAS  Google Scholar 

  34. Beckmann, J.S. and Soller, M. 1986. Restriction fragment length polymorphisms in plant genetic improvement, p. 196–250. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol. 3. B. J. Miflin (Ed.). Oxford Press, Oxford.

    Google Scholar 

  35. Edwards, M.D., Stuber, C.W., Wendel, J.F. 1987. Molecular-marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lander, E., Bostein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  CAS  PubMed  Google Scholar 

  38. Soller, M. and Beckmann, J.S. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Article  CAS  PubMed  Google Scholar 

  39. Soller, M., Genizi, A. and Brody, T. 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47: 35–39.

    Article  CAS  PubMed  Google Scholar 

  40. Soller, M., Genizi, A. 1978. The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34: 47–55.

    Article  Google Scholar 

  41. Weller, J.I. 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627–640.

    Article  CAS  PubMed  Google Scholar 

  42. Weller, J.I. 1987. Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity 59: 413–421.

    Article  Google Scholar 

  43. Weller, J.I., Soller, M., Brody, T. 1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum-×Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 1218: 329–339.

    Google Scholar 

  44. Weller, J.I., Kashi, Y., Soller, M. 1990. Power of “daughter” and “granddaughter” designs for mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Science. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckmann, J., Soller, M. Toward a Unified Approach to Genetic Mapping of Eukaryotes Based on Sequence Tagged Microsatellite Sites. Nat Biotechnol 8, 930–932 (1990). https://doi.org/10.1038/nbt1090-930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1090-930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing