Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets

Abstract

Identification of genes that affect the product accumulation phenotype of recombinant strains is an important problem in industrial strain construction and a central tenet of metabolic engineering. We have used systematic (model-based) and combinatorial (transposon-based) methods to identify gene knockout targets that increase lycopene biosynthesis in strains of Escherichia coli. We show that these two search strategies yield two distinct gene sets, which affect product synthesis either through an increase in precursor availability or through (largely unknown) kinetic or regulatory mechanisms, respectively. Exhaustive exploration of all possible combinations of the above gene sets yielded a unique set of 64 knockout strains spanning the metabolic landscape of systematic and combinatorial gene knockout targets. This included a global maximum strain exhibiting an 8.5-fold product increase over recombinant K12 wild type and a twofold increase over the engineered parental strain. These results were further validated in controlled culture conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systematic and combinatorial gene knockout target identification.
Figure 2: Visualization of the metabolic landscape.
Figure 3: Clustering analysis depicting the interaction of systematic and combinatorial targets.
Figure 4: Behavior of selected strains in optimized culturing conditions.

Similar content being viewed by others

References

  1. Stephanopoulos, G., Aristidou, A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic Press, San Diego, CA, 1998).

    Google Scholar 

  2. Ostergaard, S., Olsson, L., Johnston, M. & Nielsen, J. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18, 1283–1286 (2000).

    Article  CAS  Google Scholar 

  3. Stafford, D.E. et al. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proc. Natl. Acad. Sci. USA 99, 1801–1806 (2002).

    Article  CAS  Google Scholar 

  4. Koffas, M.A., Jung, G.Y. & Stephanopoulos, G. Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab. Eng. 5, 32–41 (2003).

    Article  CAS  Google Scholar 

  5. Alper, H., Jin, Y.-S., Moxley, J. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. (in the press) 10.1016/j.ymben.2004.12.003 (2005).

  6. Adam, P. et al. Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc. Natl. Acad. Sci. USA 99, 12108–12113 (2002).

    Article  CAS  Google Scholar 

  7. Matthews, P.D. & Wurtzel, E.T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53, 396–400 (2000).

    Article  CAS  Google Scholar 

  8. Misawa, N. & Shimada, H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59, 169–181 (1997).

    Article  CAS  Google Scholar 

  9. Farmer, W.R. & Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18, 533–537 (2000).

    Article  CAS  Google Scholar 

  10. Smolke, C.D., Martin, V.J.J. & Keasling, J.D. Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metab. Eng. 3, 313–321 (2001).

    Article  CAS  Google Scholar 

  11. Lee, P.C. & Schmidt-Dannert, C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60, 1–11 (2002).

    Article  CAS  Google Scholar 

  12. Kim, S.-W. & Keasling, J.D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72, 408–415 (2001).

    Article  CAS  Google Scholar 

  13. Jones, K.L., Kim, S.-W. & Keasling, J.D. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2, 328–338 (2000).

    Article  CAS  Google Scholar 

  14. Eisen, M., Spellman, P., Brown, P. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  15. Cunningham, F.X., Jr., Sun, Z., Chamovitz, D., Hirschberg, J. & Gantt, E. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6, 1107–1121 (1994).

    Article  CAS  Google Scholar 

  16. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1982).

    Google Scholar 

  17. Badarinarayana, V. et al. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065 (2001).

    Article  CAS  Google Scholar 

  18. Liu, Y.-G. & Whittier, R.F. Thermal asymmetric interlaced pcr: automatable amplification and sequencing of insert end fragments from pi and yac clones for chromosome walking. Genomics 25, 674–681 (1995).

    Article  CAS  Google Scholar 

  19. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  20. Miller, J.H. A Short Course in Bacterial Genetics (Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NY, 1992).

    Google Scholar 

  21. Muffler, A., Fischer, D., Altuvia, S., Storz, G. & Hengge-Aronis, R. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15, 1333–1339 (1996).

    Article  CAS  Google Scholar 

  22. Sandmann, G., Woods, W. & Tuveson, R.W. Identification of carotenoids in Erwinia herbicola and in a transformed Escherichia coli strain. FEMS Microbiol. Lett. 59, 77–82 (1990).

    Article  CAS  Google Scholar 

  23. Becker-Hapak, M., Troxtel, E., Hoerter, J. & Eisenstark, A. RpoS dependent overexpression of carotenoids from Erwinia herbicola in OXYR-deficient Escherichia coli. Biochem. Biophys. Res. Commun. 239, 305–309 (1997).

    Article  CAS  Google Scholar 

  24. Rawlings, N., Tolle, D. & Barrett, A. MEROPS: the peptidase database. Nucleic Acids Res. 32, D160–D164 (2004).

    Article  CAS  Google Scholar 

  25. Serres, M.H. et al. A functional update of the Escherichia coli K-12 genome. Genome Biol. 2, published online 20 August 2001 (10.1186/gb-2001-2-9-research0035).

Download references

Acknowledgements

We acknowledge financial support of this work by the DuPont-MIT Alliance. In particular, we would like to thank Wonchul Suh for providing the parental E. coli strain. We also thank Joel Moxley for providing thoughtful suggestions and Veronica Godoy for providing the initial phage stock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Stephanopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Covariance analysis of systematic and combinatorial targets (PDF 113 kb)

Supplementary Table 1

Primer designs for gene knockout constructs (PDF 70 kb)

Supplementary Discussion (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23, 612–616 (2005). https://doi.org/10.1038/nbt1083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing