Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A simple method to cure established tumors by inflammatory killing of normal cells

This article has been updated

Abstract

We describe a simple technology used to cure an established metastatic disease. Intradermal injection of plasmid DNA encoding a transcriptionally targeted cytotoxic gene, along with hsp70, not only promoted tissue-specific, inflammatory killing of normal melanocytes, but also induced a CD8+ T-cell–dependent, antigen-specific response in mice that eradicated systemically established B16 tumors. This CD8+ T cell response was subsequently suppressed in vivo within a few days. The data demonstrate that deliberate destruction of normal tissue can be exploited to generate immunity against a malignant disease originating from that tissue. This approach obviates the need to identify tumor antigens and does not require complex isolation of tumor cells or their derivatives. In addition, it provides a model system for studying the mechanisms underlying the etiology and control of autoimmune diseases. Finally, despite targeting normal tissue, therapy could be separated from development of overt autoimmune symptoms, suggesting that the strategy may be valuable against tumors derived from both non-essential and essential tissue types.

*Note: In the version of this article originally published online, the name of one of the authors was spelled incorrectly. Mayoi Lai should be Maoyi Lai. This mistake has been corrected in the HTML version and will appear correctly in print.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intradermal injection of Tyr-HSVtk plasmid DNA leads to expression in melanocytes.
Figure 2: Immune consequences of Tyr-HSVtk + CMV-hsp70 intradermal injections.
Figure 3: Intradermal delivery of Tyr-HSVtk plasmid DNA delays growth of established tumors.
Figure 4: Repeated rounds of Tyr-HSVtk + CMV-hsp70 treatment cures established disease.
Figure 5: Role of CD4, CD8 and CD25+ T cells in immune rejection of tumors.
Figure 6: Specificity and suppression of the anti-melanocytic immune response.

Similar content being viewed by others

Change history

  • 15 August 2004

    corrected name; inserted footnote into abs and full text; appended corrigendum pdf to AOP PDF; corrected online date will appear in print

References

  1. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pardoll, D.M. Spinning molecular immunology into successful immunotherapy. Nat. Rev. Immunol. 2, 227–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Hodi, F.S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srivastava, P.K. Hypothesis: controlled necrosis as a tool for immunotherapy of human cancer. Cancer Immun. 3, 4 (2003).

    PubMed  Google Scholar 

  6. Huang, A.Y.C. et al. Role of bone marrow derived cells in presenting MHC Class I-restricted tumor antigens. Science 264, 961–965 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Melcher, A.A., Gough, M.J., Todryk, S. & Vile, R.G. Apoptosis or necrosis for tumour immunotherapy—what's in a name? J. Mol. Med. 77, 824–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mougneau, E., Hugues, S. & Glaichenhaus, N. Antigen presentation by dendritic cells in vivo. J. Exp. Med. 196, 1013–1016 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melcher, A.A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 4, 581–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Todryk, S. et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol. 163, 1398–1408 (1999).

    CAS  PubMed  Google Scholar 

  13. Gough, M.J. et al. Macrophages orchestrate the immune response to tumor cell death. Cancer Res. 61, 7240–7247 (2001).

    CAS  PubMed  Google Scholar 

  14. Restifo, N.P. Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr. Opin. Immunol. 12, 597–603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacAry, P.A. et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20, 95–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Engelhard, V.H., Bullock, T.N., Colella, T.A., Sheasley, S.L. & Mullins, D.W. Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol. Rev. 188, 136–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bronte, V. et al. Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res. 60, 253–258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parmiani, G. Tumor immunity as autoimmunity: tumor antigens include normal self proteins which stimulate anergic peripheral T cells. Immunol. Today 14, 536–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Pardoll, D.M. Inducing autoimmune disease to treat cancer. Proc. Natl. Acad. Sci. USA 96, 5340–5342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Alexeev, V. & Yoon, K. Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide. Nat. Biotechnol. 16, 1343–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Alexeev, V. & Yoon, K. Gene correction by RNA-DNA oligonucleotides. Pigment Cell Res. 13, 72–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Alexeev, V., Igoucheva, O., Domashenko, A., Cotsarelis, G. & Yoon, K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide. Nat. Biotechnol. 18, 43–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Saito, N. et al. High efficiency genetic modification of hair follicles and growing hair shafts. Proc. Natl. Acad. Sci. USA 99, 13120–13124 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vile, R.G. & Hart, I.R. Use of tissue-specific expression of the Herpes Simplex Virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53, 3860–3864 (1993).

    CAS  PubMed  Google Scholar 

  28. Vile, R.G. & Hart, I.R. In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res. 53, 962–967 (1993).

    CAS  PubMed  Google Scholar 

  29. Diaz, R.M., Eisen, T., Hart, I.R. & Vile, R.G. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J. Virol. 72, 789–795 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christoph, T. et al. The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol. 142, 862–873 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Musette, P. et al. Immune-mediated destruction of melanocytes in Halo Nevi is associated with the local expansion of a limited number of T cell clones. J. Immunol. 162, 1789–1794 (1999).

    CAS  PubMed  Google Scholar 

  32. Millar, D.G. et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9, 1469–1476 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Bonnotte, B. et al. Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res. 63, 2145–2149 (2003).

    CAS  PubMed  Google Scholar 

  34. Walker, L.S.K. & Abbas, A.K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kemp, E.H., Waterman, E.A. & Weetman, A.P. Immunological pathomechanisms in vitiligo. Exp. Rev. Mol. Med. (July 23, 2001), pp. 1–22.

  36. Konstantopoulos, K. Value of tyrosinase RNA detection by an RT-PCR method in melanoma prognosis [comment]. Br. J. Cancer 88, 981 (2003); [author reply Br. J. Cancer 88, 982 (2003)].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valverde, P., Garcia-Borron, J.C., Martinez-Liarte, J.H., Solano, F. & Lozano, J.A. Melanocyte stimulating hormone activation of tyrosinase in B16 mouse melanoma cells. Fed. Eur. Biochem. Soc. 304, 114–118 (1992).

    Article  CAS  Google Scholar 

  38. Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 196, 1585–1592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dyall, R. et al. Heteroclitic immunization induces tumor immunity. J. Exp. Med. 188, 1553–1561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hogquist, K.A. et al. T cell receptor antagonistic peptides induce positive selection. Cell 76, 17 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Hara, I. et al. Rejection of mouse melanoma elicited by local secretion of interleukin-2: implicating macrophages without T cells or natural killer cells in tumor rejection. Int. J. Cancer 61, 253–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  43. Linardakis, E. et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell–tumor cell fusion. Cancer Res. 62, 5495–5504 (2002).

    CAS  PubMed  Google Scholar 

  44. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W. Isolation of mouse mononuclear cells. In Current Protocols in Immunology, vol 1, 3.1.2–3.1.5 (John Wiley and Sons, Inc., New York, 1998).

    Google Scholar 

  45. Overwijk, W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altman, D.G. Analysis of survival times. In Practical Statistics for Medical Research, 365–395 (Chapman & Hall/CRC, Press, London, 1991).

    Google Scholar 

  47. Ganss, R., Montoliu, L., Monaghan, A.P. & Schutz, G. A cell-specific enhancer far upstream of the mouse tyrosinase gene confers high level and copy number–related expression in transgenic mice. EMBO J. 13, 3083–3093 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mayo Foundation and by National Institutes of Health grants RO1 CA94180 and P50CA91956. We thank T. Higgins for expert secretarial assistance. The antibodies specific to CD4 and CD8 were a gift from P. Wettstein and M. Rodriguez (Mayo Clinic). The tyrosinase promoter/enhancer element was a gift of D. Schadendorf, Skin Cancer Unit, German Cancer Research Center Heidelberg & University Hospital Mannheim, Germany. Pmel transgenic T cells specific for the hgp100 epitope were a gift of N. Restifo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G Vile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, G., Sanchez-Perez, L., Diaz, R. et al. A simple method to cure established tumors by inflammatory killing of normal cells. Nat Biotechnol 22, 1125–1132 (2004). https://doi.org/10.1038/nbt1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing