Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A partnership between biology and engineering

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. “It is conceivable that by 1984 we shall produce our food exploiting...the synthesis of proteins in cell free systems. Eventually we should be able to manufacture satisfactory foodstuffs in great chemical plants, where masses of ribosomes would be supplied with synth-etic amino acids and long-lived messenger-RNAs, with energy-yielding phosphates supplied by irradiating chloroplasts with laser-tuned light of the most effective wavelength.” Waddington, C.E.F. “Science and wisdom” in The World in 1984, the Complete New Scientist Series, vol. 2 (ed. Nigel Calder) (Penguin Books, Harmonsdworth, Middlesex, 1965).

  2. Cohen, S.N., Chang, A.C.Y., Boyer, H. & Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70, 3240–3244 (1973).

    Article  CAS  Google Scholar 

  3. Rodgers, M. The Pandora's box congress. Rolling Stone 189, 37–77 (1975).

    Google Scholar 

  4. Gibbs, W.W. Synthetic life. Sci. Am. 290, 75–81 (2004).

    Article  Google Scholar 

  5. Benner, S.A. Synthetic biology: act natural. Nature 421, 118 (2003).

    Article  CAS  Google Scholar 

  6. Kay, L. The Molecular Vision of Life, Caltech, The Rockefeller Foundation, and the Rise of the New Biology (Oxford University Press, New York, 1993).

    Google Scholar 

  7. Brent, R. Genomic biology. Cell 100, 169–183 (2000).

    Article  CAS  Google Scholar 

  8. “Systems biology is a loosely defined term, but the main idea is that biology is an information science, with genes a sort of digital code. Moreover, while much of molecular biology has involved studying a single gene or protein in depth, systems biology looks at the bigger picture, how all the genes and proteins interact.” Pollack, A. Scientist at work: Leroy Hood. New York Times April 17 (2001), p. F3

  9. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  10. Colman-Lerner, A., Chin, T. & Brent, R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739–750 (2001).

    Article  CAS  Google Scholar 

  11. Kuipers, B. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  12. “It may be interesting to realize that the above connotations of system (thing experimented on; heuristically defined, semi-permeable, and shifting boundary between it and rest of world, etc.) are not intuitive to some computer scientists. These researchers of this “science of the artificial” (Simon, 1981) never faced the need to isolate approximately and heuristically their objects of study from the larger world, because they could do so absolutely, simply by writing the proper code.” Simon, H.R. The Sciences of the Artificial, edn. 1 (MIT Press, Cambridge, Massachusetts, 1981).

  13. McAdams, H.H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997).

    Article  CAS  Google Scholar 

  14. McAdams, H.H. & Arkin, A. Towards a circuit engineering discipline. Curr. Biol. 20, R318–R320 (2000).

    Article  Google Scholar 

  15. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  16. Elowitz, M. & Leibler, S. A synthetic oscillatory network of transcription regulators. Nature 404, 335–338 (2000).

    Article  Google Scholar 

  17. Ferber, D. Microbes made to order. Science 303, 158–161 (2004).

    Article  CAS  Google Scholar 

  18. Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).

    Article  CAS  Google Scholar 

  19. Atkinson, M.R., Savageau, M.A., Myers, J.T. & Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    Article  CAS  Google Scholar 

  20. Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T. & Weiss, R. Spatiotemporal control of gene expression with pulse generating networks. Proc. Natl. Acad. Sci. USA 101, 6355–6360 (2004).

    Article  CAS  Google Scholar 

  21. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  Google Scholar 

  22. Kramer, B.P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    Article  CAS  Google Scholar 

  23. Eisen, H., Brachet, P., Pereira da Silva, L. & Jacob, F. Regulation of repressor expression in λ. Proc. Natl. Acad. Sci. USA 66, 855–862 (1970).

    Article  CAS  Google Scholar 

  24. Maurer, R., Meyer, B. & Ptashne, M.J. Gene regulation at the right operator (OR) of bacteriophage λ I. OR3 and autogenous negative control by repressor. J. Mol. Biol. 139, 147–161 (1980).

    Article  CAS  Google Scholar 

  25. Meyer, B., Maurer, R. & Ptashne, M. Gene regulation at the right operator of bacteriophage λ II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J. Mol. Biol. 139, 163–194 (1980).

    Article  CAS  Google Scholar 

  26. Brent, R. & Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736 (1985).

    Article  CAS  Google Scholar 

  27. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  Google Scholar 

  28. Ryan, A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    Article  Google Scholar 

  29. Raymond, E.S. The Cathedral and the Bazaar (O'Reilly and Associates, San Francisco, 1999).

    Book  Google Scholar 

  30. Weber, S. The Success of Open Source (Harvard University Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  31. Benford, G. The biological century. Reason November (1995) (Revised version: Reason Online, July 2001; http://reason.com/9511/BENFORDfeat.shtml.)

Download references

Acknowledgements

I am grateful to Drew Endy, Tom Knight, Gerald Sussman, Rob Carlson, Larry Lok and Harvey Eisen for useful discussions over many years, and to Paul Rabinow, Orna Resnekov, Myron Williams and the anonymous reviewers for criticisms that greatly improved this manuscript. Work is supported under Alpha Project at the Center for Genomic Experimentation and Computation, an NIH Center of Excellence in Genomic Science, supported by grant P50 HG02370 to R.B. from the National Human Genome Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brent, R. A partnership between biology and engineering. Nat Biotechnol 22, 1211–1214 (2004). https://doi.org/10.1038/nbt1004-1211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1004-1211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing