Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function-based isolation of novel enzymes from a large library

Abstract

Here we describe a high-throughput, quantitative method for the isolation of enzymes with novel substrate specificities from large libraries of protein variants. Protein variants are displayed on the surface of microorganisms and incubated with a synthetic substrate consisting of (1) a fluorescent dye (2) a positively charged moiety (3) the target scissile bond, and (4) a fluorescence resonance energy transfer (FRET) quenching partner. Enzymatic cleavage of the scissile bond results in release of the FRET quenching partner while the fluorescent product is retained on the cell surface, allowing isolation of catalytically active clones by fluorescence-activated cell sorting (FACS). Using a synthetic substrate with these characteristics, we enriched Escherichia coli expressing the serine protease OmpT from cells expressing an inactive OmpT variant by over 5,000-fold in a single round. Screening a library of 6 × 105 random OmpT variants by FACS using a FRET peptide substrate with a nonpreferred Arg-Val cleavage sequence resulted in the isolation of variant proteases with catalytic activities enhanced by as much as 60-fold. This approach represents a potentially widely applicable method for high-throughput screening of large libraries on the basis of catalytic turnover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET substrate binding and fluorescence emission upon catalytic turnover or binding to protein displayed on the cell surface.
Figure 2
Figure 3: Flow cytometric discrimination of E. coli on the basis of OmpT activity.

Similar content being viewed by others

References

  1. Kast, P. & Hilvert, D. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7, 470–479 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, F.H. & Volkov, A.A. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Stemmer, W.P.C. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Joo, H., Lin, Z. & Arnold, F.H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670–673 (1998).

    Article  Google Scholar 

  6. Matsumura, I., Wallingford, J.B., Surana, N.K., Vize, P.D. & Ellington, A.D. Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat. Biotechnol. 17, 696–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. MacBeath, G., Kast, P. & Hilvert, D. Redesigning enzyme topology by directed evolution. Science 279, 1958–1961 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Cantu, C., Huang, W. & Palzkill, T, Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J. Biol. Chem. 272, 29144–29150 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Smiley, J.A. & Benkovic, S.J. Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: antibodies for orotate decarboxylation. Proc. Natl. Acad. Sci. USA 91, 8319–8323 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christians, F.C. & Loeb, L.A. Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc. Natl. Acad. Sci. USA 93, 6124–6128 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yano, T., Oue, S. & Kagamiyama, H. Directed evolution of an aspartate aminotransferase with new substrate specificities Proc. Natl. Acad. Sci. USA 95, 5511–5515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rader, C. & Barbas, C.F. Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Demartis, S. et al. A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J. Mol. Biol. 286, 617–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen, H. et al. A method for directed evolution and functional cloning of enzymes. Proc. Natl. Acad. Sci. USA 95, 10523–1058 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Atwell, S. & Wells, J.A. Selection for improved subtiligases by phage display. Proc. Natl. Acad. Sci. USA 96, 9497–9502 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Razatos, A., Ong, Y.L., Sharma, M.M. & Georgiou, G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Nat. Acad. Sci. USA 95, 11059–11064 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daugherty, P.S., Olsen, M.J., Iverson, B.L. & Georgiou, G. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. 12, 613–621 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kamentsky, L.A., Melamed, M.R. & Derman, H. Spectrophotometer: new instrument for ultrarapid cell analysis Science 150, 630–631 (1965).

    Article  CAS  PubMed  Google Scholar 

  20. Hulett, H.R., Bonner, W.A., Barrett, J. & Herzenberg, L.A. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166, 747–749 (1969).

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro, H.M. Practical flow cytometry, Edn. 3 (Wiley-Liss, New York, NY; 1995).

    Google Scholar 

  22. Leytus, S.P., Bowles, L.K., Konisky, J. & Mangel, W.F. Activation of plasminogen to plasmin by a protease associated with the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 1485–1489 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sodeinde, O.A. et al. A surface protease and the invasive character of plague. Science 25, 1004–1007 (1992).

    Article  Google Scholar 

  24. Sugimura, K. & Nishihara, T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J. Bacteriol. 170, 5625–5632 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White, C.B., Chen, Q., Kenyon, G.L. & Babbitt, P.C. A novel activity of OmpT. Proteolysis under extreme denaturing conditions J. Biol. Chem. 270, 12990–12994 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Daugherty, P.S., Gang, C., Iverson, B.L. & Georgiou G. Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc. Natl Acad. Sci USA 97, 2029–2034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rashtchian, A., Buchman, G.W., Schuster, D.M. & Berninger, M.S. Uracil DNA glycosylase-mediated cloning of polymerase chain reaction-amplified DNA: application to genomic and cDNA cloning. Anal. Biochem. 206, 91–97 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Mangel, W.F. et al. Omptin: an Escherichia coli outer membrane proteinase that activates plasminogen. Methods Enzymol. 244, 384–399 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Grodberg, J., Lundrigan, M.D., Toledo, D.L., Mangel, W.F. & Dunn, J.J. Complete nucleotide sequence and deduced amino acid sequence of the ompT gene of Escherichia coli K-12. Nucleic Acids Res. 16, 1209 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200, 81–88 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Cadwell, R.C. & Joyce, G.F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 128–133 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank W.F. Mangel, M. Ostermeier, and C.B. Mullins for reading the manuscript and for many useful comments. We also thank the University of Texas Peptide Synthesis Facility, and the University of Texas Mass Spectrometer Facility. This work was supported by grants from the National Science Foundation BES, DARPA(Defense Advanced Research Projects Agency)(MDA972-97-10009), US Department of Energy (DE-96ER62322), Texas Higher Education Coordinating Board (ATP 3658-0423-1999), and the Welch Foundation (G.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Georgiou or Brent L. Iverson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, M., Stephens, D., Griffiths, D. et al. Function-based isolation of novel enzymes from a large library. Nat Biotechnol 18, 1071–1074 (2000). https://doi.org/10.1038/80267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing