Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Gene transfer into muscle by electroporation in vivo

Abstract

Among the nonviral techniques for gene transfer in vivo, the direct injection of plasmid DNA into muscle is simple, inexpensive, and safe. Applications of this method have been limited by the relatively low expression levels of the transferred gene. We investigated the applicability of in vivo electroporation for gene transfer into muscle, using plasmid DNA expressing interleukin-5 (IL-5) as the vector. The tibialis anterior muscles of mice were injected with the plasmid DNA, and then a pair of electrode needles were inserted into the DNA injection site to deliver electric pulses. Five days later, the serum IL-5 levels were assayed. Mice that did not receive electroporation had serum levels of 0.2 ng/ml. Electroporation enhanced the levels to over 20 ng/ml. Histochemical analysis of muscles injected with a lacZ expression plasmid showed that in vivo electroporation increased both the number of muscle fibers taking up plasmid DNA and the copy number of plasmids introduced into the cells. These results demonstrate that gene transfer into muscle by electroporation in vivo is more efficient than simple intramuscular DNA injection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A. et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

    Article  CAS  Google Scholar 

  2. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P., and Jani, A. 1992. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1: 363–369.

    Article  CAS  Google Scholar 

  3. Davis, H.L., Demeneix, B.A., Quantin, B., Coulombe, J., and Whalen, R.G. 1993. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum. Gene Ther. 4: 733–740.

    Article  CAS  Google Scholar 

  4. Davis, H.L., Whalen, R.G., and Demeneix, B.A. 1993. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum. Gene Ther. 4: 151–159.

    Article  Google Scholar 

  5. Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Felgner, P.L., Dwarki, V.J. et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749.

    Article  CAS  Google Scholar 

  6. Schofield, J.R. and Caskey, C.T. 1995. Non-viral approaches to gene therapy. Br. Med. Bull. 51: 56–71.

    Article  CAS  Google Scholar 

  7. Davis, H.L., Michel, M.-L. and Whalen, R.G. 1995. Use of plasmid DNA for direct gene transfer and immunization. Ann. N.Y. Acad. Sci. 772: 21–29.

    Article  CAS  Google Scholar 

  8. Wolff, J.A., Williams, P., Acsadi, G., Jiao, S., Jani, A., and Chong, W. 1991. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11: 474–485.

    CAS  PubMed  Google Scholar 

  9. Wells, D.J. and Goldspink, G. 1992. Age and sex influence expression of plasmid DNA directly injected into mouse skeletal muscle. FEBS Lett. 306: 203–205.

    Article  CAS  Google Scholar 

  10. Vitadello, M., Schiaffino, M.V., Picard, A., Scarpa, M., and Schiaffino, S. 1994. Gene transfer in regenerating muscle. Hum. Gene Ther. 5: 11–18.

    Article  CAS  Google Scholar 

  11. Wells, D.J. 1993. Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett. 332: 179–182.

    Article  CAS  Google Scholar 

  12. Tokui, M., Takei, I., Tashiro, R., Shimada, A., Kasuga, A., Ishii, M. et al. 1997. Intramuscular injection of expression plasmid DNA is an effective means of long-term systemic delivery of interleukin-5. Biochem. Biophys. Res. Commun. 233: 527–531.

    Article  CAS  Google Scholar 

  13. Tripathy, S.K., Svensson, E.G., Black, H.B., Goldwasser, E., Margalith, M., Hobart, P.M. et al. 1996. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. USA 93: 10876–10880.

    Article  CAS  Google Scholar 

  14. Titomirov, A.V., Sukharev, S., and Kistanova, E. 1991. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta. 1088: 131–134.

    Article  CAS  Google Scholar 

  15. Muramatsu, T., Mizutani, Y., Ohmori, Y., and Okumura, J. 1997. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230: 376–380.

    Article  CAS  Google Scholar 

  16. Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J. et al. 1996. In vivo electroinjection and expression in rat liver. FEBS Lett. 389: 225–228.

    Article  CAS  Google Scholar 

  17. Rols, M.-P., Delteil, C., Golzio, M., Dumond, P., Cros, S., and Teissie, J. 1998. In vivo electrically mediated protein and gene transfer in murune melanoma. Nat. Biotechnol. 16: 168–171.

    Article  CAS  Google Scholar 

  18. Sanderson, C.J. 1992. Interleukin-5, eosinophils, and disease. Blood 79: 3101–3109.

    CAS  PubMed  Google Scholar 

  19. Takatsu, K. 1992. Interleukin-5. Curr. Opin. Immunol. 4: 299–306.

    Article  CAS  Google Scholar 

  20. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. 1997. “Green mice” as a source of ubiquitous green cells. FEBS Lett. 407: 313–319.

    Article  CAS  Google Scholar 

  21. Miyazaki, J., Takaki, S., Araki, K., Tashiro, F., Tominaga, A., Takatsu, K. et al. 1989. Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene 79: 269–277.

    Article  CAS  Google Scholar 

  22. Niwa, H., Yamamura, K., and Miyazaki, J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.

    Article  CAS  Google Scholar 

  23. Wolf, H., Rols, M.P., Boldt, E., Neumann, E., and Teissie, J. 1994. Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys. J. 66: 524–531.

    Article  CAS  Google Scholar 

  24. Jiao, S., Williams, P., Berg, R.K., Hodgeman, B.A., Liu, L., Repetto, G. et al. 1992. Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther. 3: 21–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aihara, H., Miyazaki, Ji. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16, 867–870 (1998). https://doi.org/10.1038/nbt0998-867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing