Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria

Abstract

A large-scale production system of uridine 5′-diphospho-galactose (UDP-Gal) has been established by the combination of recombinant Escherichia coli and Corynebacterium ammoniagenes. Recombinant E. coli that overexpress the UDP-Gal biosynthetic genes galT, galK, and galU were generated. C. ammonia-genes contribute the producion of uridine triphosphate (UTP), a substrate for UDP-Gal biosynthesis, from orotic acid, an inexpensive precursor of UTP. UDP-Gal accumulated to 72 mM (44 g/L) after a 21 h reaction starting with orotic acid and galactose. When E. coli cells that expressed the α1,4-galactosyltrans-ferase gene of Neisseria gonorrhoeae were coupled with this UDP-Gal production system, 372 mM (188 g/L) globotriose (Galα1 -4Galβ1 -4Glc), a trisaccharide portion of verotoxin receptor, was produced after a 36 h reaction starting with orotic acid, galactose, and lactose. No oligosaccharide by-products were observed in the reaction mixture. The production of globotriose was several times higher than that of UDP-Gal. The strategy of producing sugar nucleotides by combining metabolically engineered recombinant E. coli with a nucleoside 5′-triphosphate producing microorganism, and the concept of producing oligosaccharides by coupling sugar nucleotide production systems with glycosyltransferases, can be applied to the manufacture of other sugar nucleotides and oligosaccharides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gabius, H.-J. and Gabius, S. 1997. Glycoscience: status and perspectives. Chapman and Hall GmbH, Weinheim, Germany.

    Google Scholar 

  2. Khan, S.H. and O'Neill, R.A. 1996. Modern methods in carbohydrate synthesis. Harwood Academic Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  3. Leloir, L.F. 1971. Two decades of research on the biosynthesis of saccharides. Science 172: 1299–1303.

    Article  CAS  Google Scholar 

  4. Gilbert, M., Watson, D.C., Cunningham, A.-M., Jennings, M.R., Young, N.M., and Wakarchuk, W.W. 1996. Cloning of the lipooligosaccharide α-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 271: 28271–28276.

    Article  CAS  Google Scholar 

  5. Kolkman, M.A.B., Wakarchuk, W., Nuijten, P.J.T., van der Zeijst, B.A.M. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26: 197–208.

    Article  CAS  Google Scholar 

  6. Martin, S.L., Edbrooke, M.R., Hodgman, T.C., van den Eijnden, D.H., and Bird, M.I. 1997. Lewis X biosynthesis in Helicobacter pylori: molecular cloning of an α(1,3)-fucosyltransferase gene. J. Biol. Chem. 272: 21349–21356.

    Article  CAS  Google Scholar 

  7. Ge, Z., Chan, N.W.C., Palcic, M.M. and Taylor, D.E. 1997. Cloning and heterologous expression of an α-1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J. Biol. Chem. 272: 21357–21363.

    Article  CAS  Google Scholar 

  8. Gotschlich, E.C. 1998. Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them. US 5,705,367.

  9. Yamamoto, T., Nakashizuka, M., and Terada, I. 1998. Cloning and expression of a marine bacterial β-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. J. Biochem. 123: 94–100.

    Article  CAS  Google Scholar 

  10. Wong, C.-H., Haynie, S.L., and Whitesides, G.M. 1982. Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5′-diphosphate glucose and uridine 5′-diphosphate galactose. J. Org. Chem. 47: 5416–5418.

    Article  CAS  Google Scholar 

  11. Wong, C.-H., Wang, R., and Ichikawa, Y. 1992. Regeneration of sugarnucleotide for enzymatic oligosaccharide synthesis: use of gal-1-phosphate uridyltransferase in the regeneration of UDP-galactose, UDP-2-deoxygalactose, and UDP-galactosamine. J. Org. Chem. 57: 4343–4344.

    Article  CAS  Google Scholar 

  12. Tochikura, T., Mugibayashi, Y., Kawai, H., Kawaguchi, K., and Ogata, K. 1970. Studies on microbial metabolism of sugar nucleotides Part IV. Effect of water content of dried cells of Torulopsis Candida on UDP-hexose fermentation. Amino Acid and Nucleic Acid 22: 144–150.

    Google Scholar 

  13. Lingwood, C.A., Law, H., Richardson, S., Petric, M., Brunton, J.L., Grandis, S.D. et al. 1987. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem. 262: 8834–8839.

    CAS  PubMed  Google Scholar 

  14. Lee, Y.C. 1990. High-performance anion-exchange chromatography for carbohydrate analysis. Anal. Biochem. 189: 151–162.

    Article  CAS  Google Scholar 

  15. Teshiba, S. and Furuya, A. 1988. Production of nucleotides and nucleosides by fermentation. Gordon and Breach Science Publishers, New York.

    Google Scholar 

  16. Fujio, T. and Maruyama, A. 1997. Enzymatic production of pyrimidine nucleotides using Corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: enzymatic production of CDP-choline from orotic acid and choline chloride (part I). Biosci. Biotech. Biochem. 61: 956–959.

    Article  CAS  Google Scholar 

  17. Whistler, R.L. and Durso, D.F. 1950. Chromatographic separation of sugars on charcoal. J. Am. Chem. Soc. 72: 677–679.

    Article  CAS  Google Scholar 

  18. Navarro, A., Caruel, H. Rigal, L., and Phemius, R 1997. Continuous Chromatographic separation process: simulated moving bed allowing simultaneous withdrawal of three fractions. J. Chromatogr. 770: 39–50.

    Article  CAS  Google Scholar 

  19. Sambrook, J., Fritsh, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  20. Fujio, T., Nishi, T., Ito, S., and Maruyama, A. 1997. High level expression of XMP aminase in Escherichia coli and its application for the industrial production of 5′-guanylic acid. Biosci. Biotech. Biochem. 61: 840–845.

    Article  CAS  Google Scholar 

  21. Lemaire, H.-G. and Müller-Hill, B. 1986. Nucleotide sequeces of the galE gene and the galT gene of E. coli. Nucleic Acids Res. 14: 7705–7711.

    Article  CAS  Google Scholar 

  22. Debouck, C., Riccio, A., Schumperli, D., McKenney, K., Jeffers, J., Hughes, C. et al. 1985. Structure of the galactokinase gene of Escherichia coli, the last (?) gene of the gal operon. Nucleic Acids Res. 13: 1841–1853.

    Article  CAS  Google Scholar 

  23. Weissborn, A.C., Liu, Q., Rumley, M.K., and Kennedy, E.P. 1994. DTP: α-D-glu-cose-1-phosphate uridyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J. Bacteriol. 176: 2611–2618.

    Article  CAS  Google Scholar 

  24. Lahti, R., Pitkäranta, T., Valve, E., llta, I., Kukko-Kalske, E., and Heinonen, J. 1988. Cloning and characterization of the gene encoding inorganic pyrophos-phatase of Escherichia coli K-12. J. Bacteriol. 170: 5901–5907.

    Article  CAS  Google Scholar 

  25. Lagunas, R. and Díez-Masa, J.C. 1994. Separation and analysis of 4′-epimeric UDP-sugars by ion-pair reverse-phase HPLC. Anal. Biochem. 216: 188–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, S., Endo, T., Tabata, K. et al. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16, 847–850 (1998). https://doi.org/10.1038/nbt0998-847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing