Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Expansion of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human Bone Marrow Cells

Abstract

We have investigated the potential of stirred suspension cultures to support hematopoiesis from starting innocula of normal human bone marrow cells. Initial studies showed that the short–term maintenance of both colony–forming cell (CFC) numbers and their precursors, detected as long–term culture–initiating cells (LTC–IC), could be achieved as well in stirred suspension cultures as in static cultures. Neither of these progenitor cell populations was affected in either type of culture when porous microcarriers were added to provide an increased surface for adherent cell attachment. Supplementation of the medium with 10 ng/ml of Steel factor (SF) and 2 ng/ml of interleukin–3 (IL–3) resulted in a significant expansion of LTC–IC, CFC and total cell numbers in stirred cultures. Both the duration and ultimate magnitude of these expansions were correlated with the initial cell density and after 4 weeks the number of LTC–IC and CFC present in stirred cultures initiated with the highest starting cell concentration tested reflected average increases of 7– and 22–fold, respectively, above input values. Stirred suspension cultures offer the combined advantages of homogeneity and lack of dependence on the formation and maintenance of an adherent cell layer. Our results suggest their applicability to the development of scaled–up bioreactor systems for clinical procedures requiring the production of primitive hematopoietic cell populations. In addition, stirred suspension cultures may offer a new tool for the analysis of hematopoietic regulatory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.C. and Eaves, C.J. 1990. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 87: 3584–3588.

    Article  CAS  Google Scholar 

  2. Sutherland, H.J., Eaves, C.J., Lansdorp, P.M., Thacker, J.D. and Hogge, D.E. 1991. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78: 666–672.

    CAS  PubMed  Google Scholar 

  3. Sutherland, H.J., Hogge, D.E., Cook, D. and Eaves, C.J. 1993. Alternative mechanisms with and without Steel factor support primitive human hematopoiesis. Blood 81: 1465–1470.

    CAS  PubMed  Google Scholar 

  4. Turhan, A.G., Humphries, R.K., Phillips, G.L., Eaves, A.C. and Eaves, C.J. 1989. Clonal hematopoiesis demonstrated by X-Hnked DNA polymorphisms after allogeneic bone marrow transplantation. N. Engl. J. Med. 320: 1655–1661.

    Article  CAS  Google Scholar 

  5. Eaves, C.J., Sutherland, H.J., Udomsakdi, C., Lansdorp, P.M., Szilvassy, S.J., Eraser, C.C., Humphries, R.K., Bamett, M.J., Phillips, G.L. and Eaves, A.C. 1992. The human hematopoietic stem cell in vitro and in vivo. Blood Cells 18: 301–307.

    CAS  Google Scholar 

  6. Dexter, T.M., Allen, T.D. and Lajtha, L.G. 1977. Conditions controlling the proliferation of hemopoietic stem cells in vitro. J. Cell. Physiol. 91: 335–344.

    Article  CAS  Google Scholar 

  7. Dexter, T.M., Spooncer, E., Toksoz, D. and Lajtha, L.G. 1980. The role of cells and their products in the regulation of in vitro stem cell proliferation and granulocyte development. J. Suprarnoi. Struc. 13: 513–524.

    Article  CAS  Google Scholar 

  8. Mauch, P., Greenberger, J.S., Botnik, L., Hannon, E. and Hellman, S. 1980. Evidence for structured variation in self-renewal capacity within long-term bone marrow cultures. Proc. Natl. Acad. Sci. USA 77: 2927–2930.

    Article  CAS  Google Scholar 

  9. Coulombel, L., Eaves, A.C. and Eaves, C.J. 1983. Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood 62: 291–297.

    CAS  PubMed  Google Scholar 

  10. Slovick, F.T., Abboud, C.N., Brennan, J.K. and Lichtman, M.A. 1984. Survival of granulocytic progenitors in the nonadherent and adherent compartments of human long-term marrow cultures. Exp. Hematol. 12: 327–338.

    CAS  PubMed  Google Scholar 

  11. Hogge, D.E., Sutherland, H.J., Cashman, J.D., Lansdorp, P.M., Humphries, R.K. and Eaves, C.J. 1994. Cytokines acting early in human haematopoiesis, p. 49–63. In: Cytokines and Growth Factors. Vol. 7, 1st Ed. Brenner, M. (Ed.). BailliereTindall, London.

    Google Scholar 

  12. Verfaillie, C.M. 1992. Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79: 2821–2826.

    CAS  PubMed  Google Scholar 

  13. Brandt, J., Srour, E.F., van Besien, K., Briddell, R.A. and Hoffman, R. 1990. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J. Clin. Invest. 86: 932–941.

    Article  CAS  Google Scholar 

  14. Ogawa, M. 1993. Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853.

    CAS  Google Scholar 

  15. Brandt, J., Briddell, R.A., Srour, E.F., Leemhuis, T.B. and Hoffman, R. 1992. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 79: 634–641.

    CAS  PubMed  Google Scholar 

  16. Bernstein, I.D., Andrews, R.G. and Zsebo, K.M. 1991. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+lin- cells, and the generation of colony-forming cell progeny from CD34+ lin- cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 77: 2316–2321.

    CAS  PubMed  Google Scholar 

  17. Brugger, W., Mocklin, W., Heimfeld, S., Berenson, R.J., Mertelsmann, R. and Kanz, L. 1993. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1β (IL-β), IL-6,IL-3, interferon-γ, and erythropoietin. Blood 81: 2579–2584.

    CAS  Google Scholar 

  18. Migliaccio, G., Migliaccio, A.R., Druzin, M.L., Giardina, P.J.V., Zsebo, K.M. and Adamson, J.W. 1992. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Blood 79: 2620–2627.

    CAS  PubMed  Google Scholar 

  19. Haylock, D.N., To, L.B., Dowse, T.L., Juttner, C.A. and Simmons, P.J. 1992. Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 80: 1405–1412.

    CAS  PubMed  Google Scholar 

  20. Lansdorp, P.M., Dragowska, W. and Mayani, H. 1993. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 178: 787–791.

    Article  CAS  Google Scholar 

  21. Petz, L.D., Yam, P., Wallace, R.B., Stock, A.D., de Lange, G., Knowlton, R.G., Brown, V.A., Donis-Keller, H., Hill, L.R., Forman, S.J. and Blume, K.G. 1987. Mixed hematopoietic chimerism following bone marrow transplantation for hematologic malignancies. Blood 70: 1331–1337.

    CAS  PubMed  Google Scholar 

  22. Schwartz, R.M., Palsson, B.O. and Emerson, S.G. 1991. Rapid medium perfusion rate significantly increases the productivity and longevity of human bone marrow cultures. Proc. Natl. Acad. Sci. USA 88: 6760–6764.

    Article  CAS  Google Scholar 

  23. Caldwell, J., Palsson, B.O., Locey, B. and Emerson, S.G. 1991. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal Cells. J. Cell. Physiol. 147: 344–353.

    Article  CAS  Google Scholar 

  24. Schwartz, R.M., Emerson, S.G., Clarke, M.F. and Palsson, B.O. 1991. In vitro myelopoiesis stimulated by rapid medium exchange and supplementation with hematopoietic growth factors. Blood 78: 3155–3161.

    CAS  PubMed  Google Scholar 

  25. Koller, M.R., Bender, J.G., Miller, W.M. and Papoutsakis, E.T. 1993. Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Bio/Technology 11: 358–363.

    Article  CAS  Google Scholar 

  26. Koller, M.R., Emerson, S.G. and Palsson, B.O. 1993. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82: 378–384.

    CAS  PubMed  Google Scholar 

  27. Sardonini, C.A. and Wu, Y.-J. 1993. Expansion and differentiation of human hematopoietic cells from static cultures through small-scale bioreactors. Biotechnol. Prog. 9: 131–137.

    Article  CAS  Google Scholar 

  28. Eaves, C.J., Cashman, J.D. and Eaves, A.C. 1991. Methodology of long-term culture of human hemopoietic cells. J. Tissue Culture Methods 13: 55–62.

    Article  Google Scholar 

  29. Otsuka, T., Thacker, J.D., Eaves, C.J. and Hogge, D.E. 1991. Differential effects of microenvironmentally presented interleukin 3 versus soluble growth factor on primitive human hematopoietic cells. J. Clin. Invest. 88: 417–422.

    Article  CAS  Google Scholar 

  30. Otsuka, T., Thacker, J.D. and Hogge, D.E. 1991. The effects of interleukin 6 and interleukin 3 on early hematopoietic events in long-term cultures of human marrow. Exp. Hematol. 19: 1042–1048.

    CAS  PubMed  Google Scholar 

  31. Fauser, A.A. and Messner, H.A. 1979. Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts. Blood 53: 1023–1027.

    CAS  PubMed  Google Scholar 

  32. Cashman, J., Eaves, A.C. and Eaves, C.J. 1985. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood 66: 1002–1005.

    CAS  PubMed  Google Scholar 

  33. Lansdorp, P.M., Aarden, L.A., Calafat, J. and Zeiljemaker, W.P. 1986. A growth-factor dependent B-cell hybridoma, p. 105–113. In: Current Topics in Microbiology and Immunology. Potter, M. and Melchers, F. (Eds.). Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  34. Dedhar, S., Gaboury, L., Galloway, P. and Eaves, C. 1988. Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc. Natl. Acad. Sci. USA 85: 9253–9257.

    Article  CAS  Google Scholar 

  35. Anderson, D.M., Lyman, S.D., Baird, A., Wignall, J.M., Eisenman, J., Rauch, C., March, C.J., Boswell, H.S., Gimpel, S.D., Cosman, D. and Williams, D.E. 1990. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 63: 235–243.

    Article  CAS  Google Scholar 

  36. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.M., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. 1990. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. USA 87: 7512–7516.

    Article  CAS  Google Scholar 

  37. Sauvageau, G., Lansdorp, P.M., Eaves, C.J., Hogge, D.E., Dragowska, W.H., Reid, D.S., Largman, C., Lawrence, H.J. and Humphries, R.K. 1994. Differential expression of homeobox genes in functionally distinct CD3+ sub-populations of human bone marrow cells. Proc. Natl. Acad. Sci. USA. In press.

  38. Castro-Malaspina, H., Gay, R.E., Resnick, G., Kapoor, N., Myers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H.E. and Moore, M.A.S. 1980. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56: 289–301.

    CAS  PubMed  Google Scholar 

  39. Udomsakdi, C., Eaves, C.J., Swolin, B., Reid, D.S., Barnett, M.J. and Eaves, A.C. 1992. Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc. Natl. Acad. Sci. USA 89: 6192–6196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Piret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandstra, P., Eaves, C. & Piret, J. Expansion of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human Bone Marrow Cells. Nat Biotechnol 12, 909–914 (1994). https://doi.org/10.1038/nbt0994-909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0994-909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing