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context dependence. Perhaps, in this convoluted 
sequence space, context-dependent positions are in 
some way related to intragenic suppressors. 

Regardless of context, these experiments show 
high gain factors, whether we are grouping residues 
along one face of a helix or walking down a sequence 
in a blindly contiguous manner. Stemmer calculates 
that in using REM, "For a 285-residue protein, like 
B-lactamase, the fraction of all possible amino-acid 
combinations present in the initial library is only 3 x 
10·363." He also calculates (independent of method 
used), that I 0300 universe masses are required to 
synthesize all possible proteins of this length.' GA­
based technologies are by their very nature sparse 
searches. Algorithmically, this is their power-to 
converge on a solution without searching the entire 
space. The important experimental point is that such 
sparse searches utilize physically realistic synthe­
ses. In this regard, all GA-based technologies are 
very similar: REM, EEM, and GA-PCR "learn" 
from their initial sparse search and then generate 
interesting new proteins within a few iterations. 

Which GA-based technology is best? That prob­
ably depends on the protein and the specific engi­
neering goal. One advantage of REM is its synergis­
tic interaction with the structure of the genetic 
code45 •8•16 having to do with hydropathy and molar 
volume, important determinants of protein structure 
and function. The "highly impractical, 1" labor inten­
sive aspects of EEM are lessened by new PCR 
methodology, 17 laboratory automation, and high 
throughput screening. However, given the fact that 
the field of combinatorial chemistry is still in its 
infancy, it is probably wise to consider all of the 
proven mutagenesis methods: GA-PCR, REM and 
its relatives, error-prone PCR, parsimonious mu­
tagenesis, 18 and structurally guided or sequential 
random mutagenesis. 19 

All of these methods are currently being com­
pared in my laboratory, using the green fluorescent 
protein as a model, with the goal of finding deriva­
tives with novel spectroscopic properties.17 
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FIGURE 1. Sample Swiss-3Dlmage: The human 
tumor necrosis factor (TNF)-receptor complex. 
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