Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Efficient Production of Active Human Manganese Superoxide Dismutase in Escherichia Coli

Abstract

Human manganese superoxide dismutase (hMnSOD) was expressed in Escherichia coli under regulation of the PL promoter and cII ribosomal binding site (rbs), derived from bacteriophage λ. Production of hMnSOD was induced upon temperature shift from 32°C to 42°C. The enzyme accumulated for a period of 120 min and reached levels about 25% of total bacterial proteins. Recombinant hMnSOD, of subunit molecular weight (MW) about 22 kDa, comigrated on NaDodSO4/polyacrylamide gels with authentic human liver MnSOD and reacted with antibodies directed against the latter. Mn++ supplementation in the bacterial growth media was essential for production of enzymatically active hMnSOD. The recombinant enzyme was purified to homogeneity by a combination of heat treatment and ion-exchange chro-matography. It behaves on gel filtration as a dimer of about 39 kDa and appears indistinguishable from the authentic enzyme, having a specific activity of 3500 units/mg, appropriate absorption spectrum and Mn content. Sequence analysis of the NH2-terminus, however, revealed an additional methionyl residue. The recovery of large quantities of pure hMnSOD with full enzymatic activity will permit in-depth evaluation of its clinical potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fridovich, I. 1986. Biological Effects of the Superoxide Radical. Arch. Biochem. Biophys. 247:1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Freeman, B.A. and Crapo, J.D. 1982. Biology of disease: free radicals and tissue injury. Lab. Invest. 47:412—426.

    CAS  PubMed  Google Scholar 

  3. McCord, J.M. and Fridovich, I. 1969. Superoxide dismutase. An ensymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.

    CAS  PubMed  Google Scholar 

  4. Steinman, H.M. 1982. Superoxide Dismutases: Protein Chemistry and Structure-Function Relationships. p. 11–68. In: Superoxide Dismutase. Oberley, L. W. (Ed.) CRC, Boca Raton, FL, Vol 1.

    Google Scholar 

  5. Harris, J.I., Auffret, A.D., Northrop, F.D. and Walker, J.E. 1980. Structural comparisons of Superoxide dismutases. Eur. J. Biochem. 106:297–303.

    Article  CAS  PubMed  Google Scholar 

  6. Weisiger, R.A. and Fridovich, I. 1973. Mitochondrial Superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248:4793–4796.

    CAS  PubMed  Google Scholar 

  7. Geller, B.L. and Winge, D.R. 1984. Subcellular distribution of Superoxide dismutases in rat liver. Methods Enzymol. 105:105–114.

    Article  CAS  PubMed  Google Scholar 

  8. Slot, J.W., Geuze, H.J., Freeman, B.A. and Crapo, J.D. 1986. Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab. Invest. 55:363–371.

    CAS  PubMed  Google Scholar 

  9. Hirano, K., Fukuta, M., Adachi, T., Hayashi, K., Sugiura, M., Mori, Y. and Toyoshi, K. 1985. In vitro synthesis of Superoxide dismutases of rat liver. Biochem. Biophys. Res. Commun. 129:89–94.

    Article  CAS  PubMed  Google Scholar 

  10. Marlhens, F., Nicole, A. and Sinet, P.M. 1985. Lowered level of translatable messenger RNAs for manganese Superoxide dismutase in human fibroblasts transformed by SV 40. Biochem. Biophys. Res. Commun. 129:300–305.

    Article  CAS  PubMed  Google Scholar 

  11. Marres, C.A.M., van Loon, A.P.G.M., Oudshoorn, P., van Steeg, H., Grivell, L.A. and Slater, E.C. 1985. Nucleotide sequence analysis of the nuclear gene coding for manganese Superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. Eur. J. Biochem. 147:153–161.

    Article  CAS  PubMed  Google Scholar 

  12. Hallewell, R.A., Mullenbach, G.T., Stempien, M.M. and Bell, G.I. 1986. Sequence of a cDNA coding for mouse manganese Superoxide dismutase. Nucleic Acids Res. 14:9539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beck, Y., Oren, R., Amit, B., Levanon, A., Gorecki, M. and Hartman, J.R. 1987. Human Manganese Superoxide Dismutase cDNA sequence. Nucleic Acids Res. 15:9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCord, J.M., Boyle, J.A., Day, Jr., E.D., Rizzolo, L.J. and Salin, M.L. 1977. A Manganese-containing Superoxide Dismutase from human liver, p. 129–138. In: Superoxide and Superoxide Dismutase. Michelson, A. M., McCord, J. M. and Fridovich, I. (Eds.) Academic Press, London.

    Google Scholar 

  15. Barra, D., Schinina, M.E., Simmaco, M., Bannister, J.V., Bannister, W.H., Rotilio, G. and Bossa, F. 1984. The primary structure of human liver manganese Superoxide dismutase. J. Biol. Chem. 259:12595–12601.

    CAS  PubMed  Google Scholar 

  16. Creagan, R., Tischfield, J., Ricciuti, F. and Ruddle, F.H. 1973. Chromosome assignments of genes in man using mouse-human somatic cell hybrids: mitochondrial Superoxide dismutase (indophenoi oxidase-B, tetrametric) to chromosome 6. Humangenetik 20:203–209.

    Article  CAS  PubMed  Google Scholar 

  17. Shinkai, K., Mukai, M. and Akedo, H. 1986. Superoxide radical potentiates invasive capacity of rat ascites hepatoma cells in vitro. Cancer Lett. 32:7–13.

    Article  CAS  PubMed  Google Scholar 

  18. Toda, K., Miyachi, Y., Nesumi, N., Konishi, J. and Imamura, S. 1986. UVB/PUVA-induced suppression of human natural killer activity is reduced by Superoxide dismutase and/or interleukin 2 in vitro. J. Invest. Dermatol. 86:519–522.

    Article  CAS  PubMed  Google Scholar 

  19. Oberley, L.W. and Buettner, G.R. 1979. Role of Superoxide dismutase in cancer: a review. Cancer Res. 39:1141–1149.

    CAS  PubMed  Google Scholar 

  20. McCord, J.M. 1985. Oxygen-derived free radicals in post ischemic tissue injury. N. Eng. J. Med. 312:159–163.

    Article  CAS  Google Scholar 

  21. Ambrosio, G., Becker, L.C., Hutchins, G.M., Weisman, H.F. and Weisfeldt, M.L. 1986. Reduction in experimental infarct size by recombinant human Superoxide dismutase: insights into the patho-physiology of reperfusion injury. Circulation 74:1424–1433.

    Article  CAS  PubMed  Google Scholar 

  22. Talmasoff, J.M., Ono, T. and Outler, R.G. 1980. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. USA 77:2777–2781.

    Article  Google Scholar 

  23. Huber, W. 1981. Orgotein-(Bovine CuZn Superoxide Dismutase), an antiinflammatory protein drug: discovery, toxicology and pharmacology. Eur. J. Rheumatol. Inflamm. 4:173–182.

    CAS  PubMed  Google Scholar 

  24. Puhl, W., Flohe, L., Biehl, G., Hofer, H. and Kolbel, R. 1984. Oxygen Radicals in Chemistry and Biology, p. 813–820. Bors, W., Saran, M. and Tait, D. (Eds.) Walter de Gruyter & Co., Berlin.

    Google Scholar 

  25. Hallewell, R.A., Masiarz, F.R., Najarian, R.C., Puma, J.P., Quiroga, M.R., Randolph, A., Sanchez-Pescador, R., Scandella, C.T., Smith, B., Steiner, K.S. and Mullenbach, G.T. 1985. Human CuZn Superoxide dismutase cDNA: isolation of clones synthesising high levels of active or inactive enzyme from an expression library. Nucleic Acids Res. 13:2017–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartman, J.R., Geller, T., Yavin, Z., Bartfeld, D., Kanner, D., Aviv, H. and Gorecki, M. 1986. High-level expression of enzymatically active human CuZn Superoxide dismutase in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:7142–7146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elroy-Stein, O., Bernstein, Y. and Groner, Y. 1986. Overproduction of human CuZn Superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement ot lipid peroxidation. EMBOJ. 5:615–622.

    Article  CAS  Google Scholar 

  28. Hallewell, R.A., Mills, R., Tekamp-Olson, P., Blacher, R., Rosenberg, S., Otting, F., Masiarz, F.R. and Scandella, C.J. 1987. Amino terminal acetylation of authentic human CuZn Superoxide dismutase produced in Yeast. Bio/Technology 5:363–366.

    CAS  Google Scholar 

  29. Baret, A., Jadot, G. and Michelson, A.M. 1984. Pharmacokinetic and anti-inflammatory properties in the rat of Superoxide dismutases (CuSODs and MnSOD) from various species. Biochem. Pharmacol. 33:2755–2760.

    Article  CAS  PubMed  Google Scholar 

  30. McCord, J.M. and Salin, M.L. 1977. Self-directed Cytotoxicity of Phagocyte-Generated Superoxide Free Radical, p. 257–264. In: Movement, Metabolism and Bactericidal Mechanisms of Phagocytes. Ross, A., Patriarca, P. L. and Romeo, D. (Eds.) Piccin Medical Books Pub. Padoa, Italy.

    Google Scholar 

  31. Sussman, R. and Jacob, F. 1962. Sur un système de repression thermosensible chez le bacteriophage lambda d'Escherichia coli. C. R. Hebd. Seances Acad. Sci. 254:1517–1519.

    CAS  PubMed  Google Scholar 

  32. Roberts, J.W. 1969. Termination factor for RNA synthesis. Nature 224:1168–1174.

    Article  CAS  PubMed  Google Scholar 

  33. Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall, M.N., Gabay, J., Debarbouille, M. and Schwartz, M. 1982. A role for mRNA secondary structure in the control of translation initiation. Nature 295:616–618.

    Article  CAS  PubMed  Google Scholar 

  35. Wood, C.R., Boss, M.A., Patel, T.P. and Emtage, J.S. 1984. The influence of messenger RNA secondary structure on expression of an immunoglobulin heavy chain in Escherichia coli. Nucleic Acids Res. 12:3937–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoner, B.E., Hsiung, H.M., Belagaje, R.M., Mayne, N.G. and Schoner, R.G. 1984. Role of mRNA translational efficiency in bovine growth hormone expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:5403–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Bassat, A. and Bauer, K. 1987. Amino-terminal processing of proteins. Nature 326:315.

    Article  Google Scholar 

  38. Nimrod, A., Beck, Y., Hartman, J.R. and Gorecki, M. 1988. Recombinant human manganese Superoxide dismutase is a potent anti-inflammatory agent. In: Medical, Biochemical and Chemical Aspect of Free Radicals. Yoshikawa, T. (Ed.) Elsevier, Amsterdam. In press.

    Google Scholar 

  39. Gottesman, M., Adhya, S. and Das, A. 1980. Transcription antitermination by bacteriophage lambda TV-gene product. J. Molec. Biol. 140:57–75.

    Article  CAS  PubMed  Google Scholar 

  40. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbour, New York.

    Google Scholar 

  41. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  CAS  PubMed  Google Scholar 

  42. Maizel, J.V. Jr. 1971. Polyacrylamide Gel Electrophoresis of Viral Proteins, p. 178–246. In: Methods in Virology. Maramorosch, K. and Koprowski, H. (Eds.) Academic Press, New York, Vol.5.

    Google Scholar 

  43. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurements with the Folin phenol Reagent. J. Biol. Chem. 193:265–275.

    CAS  PubMed  Google Scholar 

  45. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276–287.

    Article  CAS  PubMed  Google Scholar 

  46. Edman, P. and Begg, G. 1967. A protein sequenator. Eur. J. Biochem. 1:80–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, Y., Bartfeld, D., Yavin, Z. et al. Efficient Production of Active Human Manganese Superoxide Dismutase in Escherichia Coli. Nat Biotechnol 6, 930–935 (1988). https://doi.org/10.1038/nbt0888-930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0888-930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing