Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Production of biologically active salmon calcitonin in the milk of transgenic rabbits

Abstract

Salmon calcitonin (sCT) is an example of one of the many bioactive peptides that require amidation of the carboxy terminus for full potency. We describe a method for the production of amidated sCT in the mammary gland of transgenic rabbits. Expression of a fusion protein comprising human alpha lactalbumin joined by an enterokinase cleavable linker to sCT was directed to the mammary gland under the control of the ovine beta lactoglobulin promoter. C-terminal amidation in vivo was achieved by extending the sCT by a single glycine residue that provides a substrate for endogenous amidating activity in the mammary gland. Full characterization of the released sCT demonstrated it to be equivalent to synthetic standard in terms of structure, purity, and potency.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kelley, W.S. 1996. Therapeutic peptides: the devil is in the details. Bio/Technology 14: 28–32.

    CAS  Google Scholar 

  2. Wallis, M., Howell, S.L., and Taylor, K.W. 1985. Parathyroid hormone and calcitonin, pp. 336–350 in The biochemistry of the polypeptide hormones, John Wiley and Sons, New York.

    Google Scholar 

  3. Silva, O.M. and Becker, K.L. 1973. Salmon calcitonin in the treatment of nyper-calcemia. Arch. Intern. Med. 132: 337–339.

    Article  CAS  PubMed  Google Scholar 

  4. Avramides, A. 1977. Salmon and porcine calcitonin treatment of Pagets disease of bone. Clin. Orthop. 127: 78–85.

    Google Scholar 

  5. Mundy, G.R. 1994. Peptides and growth regulatory factors in bone. Osteoporosis 20: 557–573.

    Google Scholar 

  6. Cudd, A., Arvinte, T., Das, R.E., Chinni, C., and Maclntyre, I. 1995. Enhanced potency of human calcitonin when fibrillation is avoided. J. Pharm. Sci. 84: 717–719.

    Article  CAS  PubMed  Google Scholar 

  7. Epand, D.M., Epand, R.F., Stafford, A.R., and Orlowski, R.C. 1988. Deletion sequences of salmon calcitonin that retain the essential biological and conformational features of the intact molecule. J. Med. Chem. 31: 1595–1598.

    Article  CAS  PubMed  Google Scholar 

  8. Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P. et al. 1991. High level expression of active human α-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9: 77–84.

    Google Scholar 

  9. Lubon, H., Paleyanda, R.K., Velander, W.H., and Drohan, W.N. 1996. Transfusion medicine reviews, Vol. 10, pp. 131–143.

    Google Scholar 

  10. Eipper, B.A., Stoffers, D.A., and Mains, R.E. 1992. The biosynthesis of neuropep-tides: peptide α-amidation. Annu. Rev. Neurosci. 15: 57–85.

    Article  CAS  PubMed  Google Scholar 

  11. Brew, K., and Hill, R.L. 1975. Lactose biosynthesis. Rev. Physiol. Biochem. Pharmacol. 72: 105–158.

    Article  CAS  PubMed  Google Scholar 

  12. Lindah, L. and Vogel, H.J., 1984. Metal ion dependant hydrophobic interaction chromatography of alpha-lactalbumins. Anal. Biochem. 140: 394–402.

    Article  Google Scholar 

  13. LaVallie, E.R., Rehemtulla, A., Racie, L.A., DiBlasio, E.A., Ferenz, C., Grant, K.L. et al. 1993. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J. Biol. Chem. 268: 23311–23317.

    CAS  PubMed  Google Scholar 

  14. Ray, M.V.L., Van Duyn, P., Bertlensen, A.H., Jackson-Mathews, D.E., Sturmer, A.M., Merkler, D.J. et al. 1993. Production of recombinant salmon calcitonin by in vitro amidation of an Escerichia coli produced precursor peptide. Bio/Technology 11: 64–70.

    CAS  Google Scholar 

  15. Light, A., Savrthri, H.S., and Liepnieks, J.J. 1980. Specificity of bovine enterokinase toward protein substrates. Anal. Biochem. 106: 199–206.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, M.A., Slack, E., Edwards, A., Soliman, H.A., Baghdianz, A., Foster, G.V., and Macintyre, I. 1965. A biological assay for calcitonin. J. Endocrin. 33: 469–475.

    Article  CAS  Google Scholar 

  17. Han, K.K., and Martinage, A. 1992. Possible relationships between coding recognition amino acid sequence motif or residue(s) and posttranslational chemical modidfication of proteins. Int. J. Biochem. 24: 1349–1363.

    Article  CAS  PubMed  Google Scholar 

  18. Tamburini, P.P., Young, S.D., Jones, B.N., Palmesino, R.A., and Consalvo, A.R. 1990. Peptide substrate specificity of the α-amidating enzyme isolated from rat medullary thyroid CA-77 cells. Int. J, Peptide and Protein Res. 35: 153–156.

    Article  CAS  Google Scholar 

  19. Shah, G.V., Kacsoh, B., Seshadri, R., Grosvenor, C.E., and Crowley, W.R. 1989. Presence of calcitonin-like peptide in rat milk: possible physiological role in regulation of neonatal prolactin secretion. Endocrinology 125: 61–67.

    Article  CAS  PubMed  Google Scholar 

  20. Connolly, J.M. and Rose, D.P. 1988. Epidermal growth factor-like proteins in breast fluid and human milk. Life Sci. 42: 1751–1756.

    Article  CAS  PubMed  Google Scholar 

  21. Strewler, G.J., Budayr, A.A., Halloran, B.P., King, J.C., Diep, D., and Nissenson, R.A. 1989. High levels of parathyroid hormone-like protein in milk. Endocrinology 124: 152 (Abstract).

    Google Scholar 

  22. Stacey, A., Schnieke, A., Kerr, M., Scott, A., McKee, C., Cottinham, I. et al. 1995. Lactation is disrupted by α-lactalbumin deficiency and can be restored by human α-lactalbumin gene replacement in mice. Proc. Natl. Acad. Sci. USA 92: 2835–2839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Devinoy, E., Thepot, D., Stinnakre, M.G., Fontaine, M.L., Puissant, C., Pavirani, A. et al. 1994. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Research 3: 79–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin McKee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, C., Gibson, A., Dalrymple, M. et al. Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nat Biotechnol 16, 647–651 (1998). https://doi.org/10.1038/nbt0798-647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0798-647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing