Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions

Abstract

The analysis of macromolecular interactions is an essential element of biomedical research. Flow cytometry is uniquely capable of making sensitive and quantitative measurements of molecular interactions. These measurements can be made in real time with subsecond kinetic resolution using purified biomolecules or living cells. Combined with automated sample handling, these features make flow cytometry a versatile and robust technology for the analysis of molecular interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Melamed, M., Lindmo, T., Mendelsohn, M. 1990. Flow cytometry and sorting. Wiley-Liss Inc., New York.

    Google Scholar 

  2. Shapiro, H. M. 1995. Practical flow cytometry. Wiley-Liss Inc., New York.

    Google Scholar 

  3. Lauffenberger, D.A., Linderman, J.J. 1993. Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York.

    Google Scholar 

  4. Johnson, K.A. 1992. Transient-state kinetic analysis of enzyme reaction pathways. pp. 1–61 in The enzmes, Vol.20. Academic Press, New York.

    Google Scholar 

  5. Etfink, M.R. 1997. Fluorescence methods for studying equilibrium macromolecu-lar-ligand interactions . Methods Enzymol. 278: 221–416.

    Article  Google Scholar 

  6. Hill, J. J., and Royer, C. A. 1997. Fluorescence approaches to study of protein nucleic acid complexation. Methods Enzymol. 278: 390–416.

    Article  CAS  Google Scholar 

  7. Sklar, L.A. 1987. Real-time spectroscopic analysis of ligand-receptor dynamics Ann. Rev. Biophys. Biophys . Chem. 16: 479–506.

    CAS  Google Scholar 

  8. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K. et al. 1991. Real-time biospecific interaction analysis using surface plasmon resonance and a surface chip technology. BioTechniques 11: 620–627.

    CAS  PubMed  Google Scholar 

  9. Davies, R.D., Edwards, P.R., Watts, J.H., Lowe, C.R., Buckle, P.E., Yeung, E. et al. 1994. The resonant mirror a tool for the study of biomolecular interactions Techniques Prot . Chem. V: 285–292.

    Google Scholar 

  10. Martin, J.C., Schwartzenruber, D.E. 1980. Time: a new parameter for flow cytometry. Science. 207: 199–201.

    Article  CAS  Google Scholar 

  11. Keller, R.A., Ambrose, W.P., Goodwin, P. M., Jett, J.H., Martin, J. C., and Wu, M. 1996. Single molecule flurescence analysis in solution Appl . Spectroscopy 50: A12–A32.

    Article  Google Scholar 

  12. Vogt, R.F., Cross, G.D. Henderson, L.O., and Phillips, D. L. 1989. Model systems evaluating fluorescem-labeled microbeads as internal standards to calibrate fluo rescence intensity on flow cytometers. Cytometry 10: 294–302.

    Article  CAS  Google Scholar 

  13. Fay, S. P., Posner, R.G., Swann, W.N., and Sklar, L.A. 1991. Real-time analysis of the assembly of ligand, receptor, and G protein by quantitative fluorescence flow cytometry. Biochemistry 30: 5066–5075.

    Article  CAS  Google Scholar 

  14. Schwartz, A., Fernandez-Ropollet, E., Vogt, R., and GRatama, J.W. 1996. Standardizing flow cytometry: construction of a standardized fluorescnce calibration plot using matching spectral calibrators. Cytometry 26: 22–31.

    Article  CAS  Google Scholar 

  15. Nolan, J.P., Posner, R.G. Martin, J.C., Babbersett, R.C., and Sklar, L.A. 1995. A rapid kinetic flow cytometer with subsecond resolution. Cytometry 21: 223–229.

    Article  CAS  Google Scholar 

  16. Sklar, L.A., Seamer, L.C., Kuckuck, F., Posner, R.G., Prossnitz, E., Edwards, B., and Nolan, J.P. 1998. Sample handling for molecular assembly in flow cytometry Proc . SPIE 3256: 144–153.

    CAS  Google Scholar 

  17. Scampavia, L.D., Blankenstein, G., Ruzicka, J., and Christian, G.D., 1995. A coaxial jet mixer for rapid kinetic analysis in flow injection cytometry Anal . Chem. 67: 2743–2749.

    CAS  Google Scholar 

  18. Nolan, J.P., Chambers, J.D., and Sklar, L.A., 1998. Cytometric approaches to the study of receptors. pp 19–46 in Cytometric cellular analysis, Vol. 1. Phagocyte funciton: a guide for resarch and clinical evalutionRobinson, JP and Babcock, G. (eds.) John Wiley and Sons, New York.

    Google Scholar 

  19. Seagrave, J., Deanin, G.G. Martin, J.C., Davis, B.H., and Oliver, J.M. 1998. DNP-phycobiliprotems, fluorescent antigens to study dynamic properties of antigen-IgE-receptor complexes on RBL-2H3 rat mast cells. Cytometry. 8: 287–295.

    Article  Google Scholar 

  20. Posner, R.G., Rasor, J., Bold, J., Bernstein, Y., and Braslow, J. 1998. Measurement of receptor crosslinking at the cell surface via multiparameter flow cytometry Proc . SPIE. 3256: 132–143.

    CAS  Google Scholar 

  21. Hoffman, J.F., Linderman, J.J., and Omann, G.M. 1996. Receptor upregulation, mternalization and interconvertmg receptor states critical components of a quantitative description of n-formyl peptide-receptor dynamics in the neutrophil Biol J . Chem. 271: 18394–18404.

    CAS  Google Scholar 

  22. Gilbert, G.E., Drinkwater, D., Barter, D., and Clouse, S.B. 1992. Specificity of phosphatidylsenne-containing membrane binding sites for factor VIII J. Biol. . Chem. 267: 15861–15868.

    CAS  Google Scholar 

  23. Bardelle, C., Furie, B.C., and Gilbert, G.E. 1993. Membrane binding kinetics of factor VIII indicate a complex binding process J. Biol . Chem. 268: 8815–8824.

    CAS  Google Scholar 

  24. Gilbert, G.E., and Arena, A.A. 1995. Phosphatidylethanolamme induces high affinity binding sites for factor VIII on membranes containing phosphatidyl-L-senne J Biol . Chem. 270: 18500–18505.

    CAS  Google Scholar 

  25. Nolan, J.P., Buranda, T., Cai, H., Kommander, K., Lehnert, B., Nolan, R. et al.1998. Real-time Analysis of Molecular Assembl y by Kinetic Flow Cytometry Proc . SPIE. 3256: 114–121.

    CAS  Google Scholar 

  26. Sarvarzyan, N.A., Remmers, A.E., and Neubig, R.R. 1998. Determinants of Gi1 α and βγ binding. Measurment of high affinity interactions in a lipid environment using flow cytometry J Biol . Chem. 273: 7934–7940.

    Google Scholar 

  27. Cronan, J.E. 1990. Biotination of proteins in vivo. J. Biol. Chem. 265: 10327–10333.

    CAS  PubMed  Google Scholar 

  28. Smith, D.B., and Johnson, K.S. 1988. Single-step purification of polypeptides expresses in Eschenchia coli as fusions with glutathione-S-transferase. Gene. 67: 31–40.

    Article  CAS  Google Scholar 

  29. Hoffman, A., and Roeder, R.G. 1991. Purifications of his-tagged proteins in non denaturing conditions suggests a convenient methods fro protein interaction studies Nucl . Acids Res. 19: 6337–6338.

    Article  Google Scholar 

  30. Nolan, J.P., Shen, B.S., Park, M.S., and Sklar, L.A. 1997. Real-time kinetic analysis of nuclease-DNA binding and cleavage. Biophysical J. 72: A83.

    Google Scholar 

  31. Ruscetti, T., Lehnert, B.E., Sklar, L.A., and Nolan, J.P. 1997. Analysis of the DNA binding properties of poly-ADPnbose polymerase Proc. Amer. Soc . Cander Res. 38: 3779.

    Google Scholar 

  32. Mistelli, T., and Spector, D.L. 1997. Applications of the green fluorescent protein in cell biology and biotechnology Wafure. Nature Biotechnology. 15: 961–964.

    Article  Google Scholar 

  33. Heim, R. and Tsien, R. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer Curr . Biol. 6: 178–182.

    CAS  Google Scholar 

  34. Nolan, J.P., Shen, B., Park, M.S., and Sklar, L.A. 1996. Kinetic analysis of human flap endonuclease-1 by flow cytometry. Biochemistry. 35: 11668–11676.

    Article  CAS  Google Scholar 

  35. Shen, B., Nolan, J.P., Sklar, L.A. and Park, M.S. 1997. Essential ammo acids for substrate binding and catalysis of human flap endonuclease 1. J. Biol . Chem. 271: 9173–9176.

    Google Scholar 

  36. Shen, B., Nolan, J.P., Sklar, L.A., and Park, M.S. 1997. Functional analysis of point mutations in human flap endonuclease-1 active site Nul . Acdis Res. 25: 3332–3338.

    Article  CAS  Google Scholar 

  37. Cai H, Kommander, K White, P. S, and Nolan J P. 1998. Flow Cytometry-Based Hybridization and Polymorphism Detection and Analysis Proc . SPIE. 3256: 171–177.

  38. Pierre, Y., Desrosiers, M., Tremblay, P., Esteve, P.O, and Opdenakker, G. 1996. Flow cytometric analysis of gelatinase B (MMP-9) activity using immobilized fluorescent substrate on microspheres. Cytometry. 25: 3332–3338.

    Google Scholar 

  39. LISI, P.J., Hoffman, R.A., Teipel, J.W. 1982. A fluorescence immunoassay for soluble antigens employing flow cytometric detection . Clmica Chimica Acta. 25: 3332–3338.

    Google Scholar 

  40. McHugh, T.M. 1995. Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes, pp 575–595 in Methods in cell biology, Vol 42 Darzynkiewicz Z, Robinson, P, and Crissman H A (eds) Academic Press, San Diego, CA.

    Google Scholar 

  41. McHugh, T.M., Yang, Y.J., Chong, H.O., Blackwood, L.L. and Stites, D.P. 1989. Development of a microsphere based fluorescent immuoassay and its compari son to an enzyme immunoassay for the detection of antibodies to three antigen preparations from Candida ablbicans J Immun . Meth . 116: 213–219.

    CAS  Google Scholar 

  42. Stewart, M.W., Etches, W.S., Russel, A.S., Percy, J.S., Chew, C.K. and Gordon, P.A. 1993. Detection of antiphospholipid antibodies by flow cytometry rapid detection of antibody isotype and phosphohpid specificity. Thrombosis and Haemostasis. 70: 603–607.

    CAS  PubMed  Google Scholar 

  43. Yang, G., Olson, J.C., Pu, R. and Vyas, G.N. 1995.Flow cytometric detection of human immunodeficiency virus type 1 proviral DNA by the polymerase chain reaction incorporating digoxigenin or fluorescem-labeled dUTP. Cytometry. 21: 197–202.

    Article  CAS  Google Scholar 

  44. Needels, M.C., Jones, D.G., Tate, E.H., Hemkel, G.L., Kochersparger, L.M., Dower, M.J., et al 1993. Generation and screening of an oligonucleotide-encoded synthetic peptide library Proc Nat Acad . Sci. 90: 10700–10704.

    CAS  Google Scholar 

  45. Muller, K., Gombert, F.O., Manning, U., Grossmuller, F., Graff, P., Zaegel, H. et al 1996. Rapid identification of phosphopeptide ligands for SH2 domains J Biol . Chem. 271: 16500–06.

    CAS  Google Scholar 

  46. Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., Kettman, J.R. 1997. Advanced multiplex analysis with the FlowMetnx system. Clm . Chem. 43: 1749–1756.

    CAS  Google Scholar 

  47. Chandler, V.S., Denton, D. and Pempsell, P. 1998. Biomolecular multiplexing of up to 512 assays on a new solid-state 4 color flow analyzer Cytometry(Suppl. 9): 40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolan, J., Sklar, L. The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions. Nat Biotechnol 16, 633–638 (1998). https://doi.org/10.1038/nbt0798-633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0798-633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing