Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV

Abstract

Species-specific differences in the enzymatic inactivation of peptides is an important consideration in the evaluation of therapeutic efficacy. We demonstrate that glucagon-like peptide 2 (GLP-2), shown to be highly intestinotrophic in mice, promotes an increase in intestinal villus height but has no trophic effect on small bowel weight in rats. The reduced intestinotrophic activity of GLP-2 in rats is attributable to inactivation by the enzyme dipeptidyl peptidase IV (DPP-IV). GLP-2(1-33) was degraded to GLP-2(3-33) following incubation with human placental DPP-IV or rat serum but not by serum from DPP-IV-deficient rats. Administration of rat GLP-2 to DPP-IV-deficient rats was associated with markedly increased bioactivity of rat GLP-2 resulting in a significant increase in small bowel weight. A synthetic GLP-2 analog, r[Gly2]GLP-2, with an alanine to glycine substitution at position 2, was resistant to cleavage by both DPP-IV and rat serum in vitro. Treatment of wild&-type rats with r[Gly2]GLP-2 produced a statistically significant increase in small bowel mass. DPP-IV-mediated inactivation of GLP-2 is a critical determinant of the growth factor-like properties of GLP-2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taylor, R.G. and Fuller, P.J. 1994. Humoral regulation of intestinal adaptation. Baillieres Clin. Endocrinol. and Metab. 8: 165–183.

    Article  CAS  Google Scholar 

  2. Gleeson, M.H., Bloom, S.R., Polak, J.M., Henry, K., and Dowling, R.H. 1971. Endocrine tumour in kidney affecting small bowel structure, motility, and absorptive function. Gut 12: 773–782.

    Article  CAS  Google Scholar 

  3. Stevens, F.M., Flanagan, R.W., O'Gorman, D., and Buchanan, K.D. 1984. Glucagonoma syndrome demonstrating giant duodenal villi. Gut 25: 784–791.

    Article  CAS  Google Scholar 

  4. Bloom, S.R. and Polak, J.M. 1982. The hormonal pattern of intestinal adaptation [a major role for enteroglucagon]. Scand. J. Gastroenterol. 17: 93–103.

    Article  CAS  Google Scholar 

  5. Fuller, P.J., Beveridge, D.J., and Taylor, R.G. 1993. lleal proglucagon gene expression in the rat: characterization in intestinal adaptation using in situ hybridization. Gastroenterology 104: 459–466.

    Article  CAS  Google Scholar 

  6. Besterman, H.S., Adrian, T.E., Mallinson, C.N., Christofides, N.D., Sarson, D.L., and Pera, A. et al. 1982. Gut hormone release after intestinal resection. Gut 23: 854–861.

    Article  CAS  Google Scholar 

  7. Ehrlich, P., Tucker, D., Asa, S.L, Brubaker, P.L, and Drucker, D.J. 1994. Inhibition of pancreatic proglucagon gene expression in mice bearing subcutaneous endocrine tumors. Am. J. Physiol. Endocrinol. Metab. 267: E662–E671.

    Article  CAS  Google Scholar 

  8. Drucker, D.J., Ehrlich, P., Asa, S.L, and Brubaker, P.L. 1996. Induction of intestinal epithelial proliferation by glucagon–like peptide 2. Proc. Natl. Acad. Sci. USA 93: 7911–7916.

    Article  CAS  Google Scholar 

  9. Tsai, C.-H., Hill, M. and Drucker, D.J. 1997. Biological determinants of intestinotrophic properties of GLP-2 in vivo. Am. J. Physiol. 272: G662–G668.

    CAS  PubMed  Google Scholar 

  10. Kieffer, T.J., Mclntosh, C.H.S., and Pederson, R.A. 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucaoon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585–3596.

    Article  CAS  Google Scholar 

  11. Deacon, C.F., Johnsen, A.H., and Hoist, J.J. 1995. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol.Metab. 80: 952–957.

    CAS  PubMed  Google Scholar 

  12. Watanabe, Y., Kojima, T, and Fujimoto, Y. 1987. Deficiency of membrane-bound dipeptidyl aminopeptidase IV in a certain rat strain. Experientia 43: 400–401.

    Article  CAS  Google Scholar 

  13. Thompson, N.L., Hixson, D.C. Callanan, H., Panzica, M., Flanagan, D., Faris, R.A., et al. 1991. A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady-state RNA levels and an altered protein. Biochem. J. 273: 497–502.

    Article  CAS  Google Scholar 

  14. Bongers, J., Lambros, T, Ahmad, M. and Heimer, E.P. 1992. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim. Biophys. Acta 1122: 147–153.

    Article  CAS  Google Scholar 

  15. Frohman, L.A., Downs, T.R., Heimer, E.P. and Felix, A.M. 1989. Dipeptidyl peptidase IV and trypsin-like enzymatic degradation of human growth hormone-releasing hormone in plasma. J. Clin. Invest. 83: 1533–1540.

    Article  CAS  Google Scholar 

  16. Lance, V.A. Murphy, W.A. Sueiras-Diaz, J., Coy, D.H. 1984. Super-active analogues of growth hormone-releasing factor (1-29)-amide. Biochem. Biophys. Res. Commun. 119: 265–272.

    Article  CAS  Google Scholar 

  17. Frohman, L.A., Downs, T.R., Williams, T.C., Heimer, E.R, Pan, Y-C.E., and Felix, A.M. 1986. Rapid enzymatic degradation of growth hormone releasing factor by plasma in vivo and in vivo to a biologically inactive product cleaved at the NH2-terminuss. J. Clin. Invest. 78: 906–913.

    Article  CAS  Google Scholar 

  18. Mentlein, R., Gallwitz, B., and Schmidt, W.E. 1993. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214: 829–835.

    Article  CAS  Google Scholar 

  19. Knudsen, L.B. and Pridal, L. 1996. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1 -(7-36) amide after in vivo administration to dogs and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharmacol. 318: 429–435.

    Article  CAS  Google Scholar 

  20. Thompson, N.L., Hixson, D.C. Callanan, H. Panzica, M. Flanagan, D. Paris, R.A. et al. 1991. A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady-state RNA levels and an altered protein. Use as a liver-cell transplantation model. Biochem. J. 273: 497–502.

    Article  CAS  Google Scholar 

  21. Erickson, R.H., Suzuki, Y, Sedlmayer, A. and Kirn, Y.S. 1992. Biosynthesis and degradation of altered immature forms of intestinal dipeptidyl peptidase IV in a rat strain lacking the enzyme. J. Bid. Chem. 267: 21623–21629.

    CAS  Google Scholar 

  22. Hildebrandt, M., Reutter, W., Gitlin, J.D. 1991. Tissue-specific regulation of dipeptidyl peptidase IV expression during development. Biochem. J. 277: 331–334.

    Article  CAS  Google Scholar 

  23. Darmoul, D., Voisin, T., Couvineau, A., Rouyer-Fessard, C., Salomon, R., and Wang, Y. et al. 1994. Regional expression of epithelial dipeptidyl peptidase IV in the human intestines. Biochem. Biophys. Res. Commun. 203: 1224–1229.

    Article  CAS  Google Scholar 

  24. Bai, J.P.F. 1994. Distribution of brush-border membrane peptidases along the rat intestine Pharm. Res. 11: 897–900.

    Article  CAS  Google Scholar 

  25. Darmoul, D., Rouyer-Fessard, C., Blais, A., Voisin, T., Sapin, C., Baricault, L. et al. 1991. Dipeptidyl peptidase IV expression in rat jejunal crypt-villus axis is controlled at mRNA level. Am. J. Physiol. 261: G763–G769.

    CAS  PubMed  Google Scholar 

  26. Orskov, C. and Hoist, J.J. 1987. Radio-immunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scand. J.Clin. Lab. Invest. 47: 165–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drucker, D., Shi, Q., Crivici, A. et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol 15, 673–677 (1997). https://doi.org/10.1038/nbt0797-673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing