Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Increasing the serum persistence of an IgG fragment by random mutagenesis

Abstract

The major histocompatibility complex (MHC) class l-related receptor FcRn is involved in regulating serum gammaglobulin (IgG) levels in mice. With the aim of increasing the serum half-life of a recombinant murine Fcγ1 fragment, the affinity for binding to FcRn at pH 6,0 has been increased by random mutagenesis of Thr252, Thr254, and Thr256 followed by selection using bacteriophage display. These residues were chosen as they are in proximity to the FcRn-IgG (Fc) interaction site. Two mutants with higher affinity (due to lower off-rates) than the wild-type Fc have been isolated and analyzed in pharmacokinetic studies in mice. The mutant with the highest affinity has a significantly longer serum half-life than the wild type fragment, despite its lower off-rate from FcRn at pH 7.4. The results provide support for the involvement of FcRn in the home-ostasis of serum IgGs in mice. The indications that a homologous FcRn regulates IgG levels in humans suggest that this approach has implications for increasing the serum persistence of therapeutic antibodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ghetie, V., Hubbard, J. G., Kim, J.K., Tsen, M.F., Lee, Y., and Ward, E.S., 1966. Abnormally short serum half-lives of IgG in β2-microglobulin deficient mice. Eur. J. Immunol. 26: 690–696.

    Article  Google Scholar 

  2. Junghans, R.P. and Anderson, C.L. 1966. The protection receptor for IgG catabolism is the 32-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA 93: 5512–5516.

    Article  Google Scholar 

  3. Israel, E.J., Wilsker, D.F., Hayes, K.C., Schoenfeld, D. and Simister, N.E., 1996. Increased clearance of IgG in mice that lack β2-microglobulin: possible protective role for FcRn Immunol. 89: 573–578.

    Article  CAS  Google Scholar 

  4. Wallace, K.H. and Rees, A.R., 1980. Studies on the Immunoglobulin-G Fc fragment receptor from neonatal rat small intestine. Biochem.J. 188: 9–16.

    Article  CAS  Google Scholar 

  5. Rodewald, R. and Kraehenbuhl, J.P, 1984. Receptor-mediated transport of IgG. J. CellBiol 99: 154s–164s.

    Article  Google Scholar 

  6. Roberts, D.M. Guenthert, M. and Rodewald, RJ. 1966. Isolation and characterisation of the Fc receptor from the fetal yolk sac of the rat J. Cell Biol. 111: 1867–1876.

    Article  Google Scholar 

  7. Israel, E.J., Patel, V.K. Taylor, S.F., Marshak-Rothstein, A. and Simister, N.E., 1995. Requirement for a β2-microglobulin associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154: 6246–6251.

    CAS  PubMed  Google Scholar 

  8. Kristoffersen, E.K. and Simister, N.E., 1995. Co-localisation of the neonatal Fc-y receptor and IgG in human placental term syncytiotrophoblast. Eur. J. Immunol. 26: 1668–1671.

    Article  Google Scholar 

  9. Simister, N.E. Story, C.M. Chen, H-L and Hunt, J.S. 1996. An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur. J. Immunol. 26: 1527–1531.

    Article  CAS  Google Scholar 

  10. Leach, J.L, Sedmark, D.D., Osborne, J.M., Rahill, B., Lairmore, M.D. and Anderson, C.L. 1966. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast J. Immunol. 157: 3317–3322.

    Google Scholar 

  11. Kirn, K., Tsen, M.F., Ghetie, V. and Ward, E.S., 1994. Localization of the site of the murine lgG1 molecule that is involved in binding to the murine intestinal Fc receptor. Eur. J. Immunol. 24: 2429–2434.

    Article  Google Scholar 

  12. Medesan, C, Radu, C, Kim, J.K., Ghetie, V,and Ward, E.S., 1997. Localization of the site of the IgG molecule that regulates matemofetal transmission in mice Eur. J. Immunol. 26: 2533–2536.

    Article  Google Scholar 

  13. Medesan, C., Matesoi, D, Radu, C, Ghetie, V and Ward, E.S., 1997. Delineation of the amino acid residues involved in transcytosis and catabolism of mouse lgG1 J. Immunol. 158: 2211–2217.

    CAS  PubMed  Google Scholar 

  14. Edelman, G.M., Cunningham, B.A., Gall, W.E. GottHeb, R.D., Rutishauser, U. and Waxdal, M.J. 1969. TriecovalentstmctureafaneγG Molecule. Proc. Natl. Acad. Sci. USA. 63: 78–85.

    Article  CAS  Google Scholar 

  15. Deisenhofer, J. 1981. Crystallographic refinement and atomic models of human Fc fragment and its complex from fragment B of protein A from Staphylococcus aureus at 2.9 and 2.8 A resolution. Biochemistry. 20: 2361–2370.

    Article  CAS  Google Scholar 

  16. Burmeister, W.P., Huber, A.H. and Bjorkman, P.J. 1994. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature. 372: 379–383.

    Article  CAS  Google Scholar 

  17. Raghavan, M., Bonagura, V.R., Morrison, S.L. and Bjorkman, P.J. 1995. Analysis of the pH dependence of the neonatal receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 34: 14649–14657.

    Article  CAS  Google Scholar 

  18. Popov, S, Hubbard, J. G., Kim, J.K., Ober, B., Ghetie, V. and Ward, E.S., 1966. The stoichiometry and affinity of interaction of murine Fc fragments with the MHC class l-related receptor, FcRn. Mol. Immunol. 33: 521–530.

    Article  Google Scholar 

  19. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. and Foeller, C 1991. Sequences of proteins of immunological interest. US Department of Health and Human Services.

  20. Story, C.M., Mikulska, J.E. and Simister, N.E. 1994. A major histocompatibility complex class l-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J. Exp. Med. 180: 2377–2381.

    Article  CAS  Google Scholar 

  21. Kim, U.K., Tsen, M-F, Ghetie, V. and Ward, E.S., 1994. Identifying amino acid residues that influence plasma clearance of mouse lgG1 fragments by site directed mutagenesis. Eur. J. Immunol. 24: 542–548.

    Article  CAS  Google Scholar 

  22. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P and Winter, G 1991. Multisubunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19: 4133–4137.

    Article  CAS  Google Scholar 

  23. Zijlstra, M., Bix, M Simister, M.E., Loring, J.M., Raulet, D.H. and Jaenisch, R 1990. β2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature. 344: 742–746.

    Article  CAS  Google Scholar 

  24. Brambell, F.W.R., Hemmings, W.A. and Morris, I.G. 1964. A theoretical model of gammaglobulin catabolism. Nature. 203: 1352–1355.

    Article  CAS  Google Scholar 

  25. Duncan, A.R. Woof, J.M. Partridge, L.J. Burton, D.R. and Winter, G 1988. Localization of the binding site for the human high affinity Fc receptor on IgG. Nature. 332: 563–564.

    Article  CAS  Google Scholar 

  26. Sarmay, G., Lund, J., Rozsnyay, Z., Gergely, J. and Jefferis, R. 1992. Mapping and comparison of the interaction sites on the Fc region of IgG responsible for triggering antibody dependent cellular cytotoxicity (ADCC) through different types of human Fc receptor. Mol. Immunol. 29: 633–639.

    Article  CAS  Google Scholar 

  27. Duncan, A.R. and Winter, G. 1988. The binding site for C1 q on IgG. Nature. 332: 738–740.

    Article  CAS  Google Scholar 

  28. Horton, R.M., Hunt, H.D., Ho, S.N., Pulten, J.K. and Pease, L.R. 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 77: 61–68.

    Article  CAS  Google Scholar 

  29. Marks, J.D., Hoogenboom, H.R., Bonnett, T.R., McCafferty, J., Griffiths, A.D. and Winter, G. 1991. By-passing immunisation: human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  Google Scholar 

  30. Ward, E.S. 1994. VH shuffling can be used to convert an Fv fragment of anti-hen egg lysozyme specificity to one that recognizes a T cell receptor Va. Mol. Immunol. 32: 147–156.

    Article  Google Scholar 

  31. Ames, G.F., Prody, C. and Kustu, S. 1980. Simple, rapid and quantitative release of periplasmic proteins by chloroform. J. Bacteriol. 160: 1181–1183.

    Google Scholar 

  32. Ward, E.S., Guessow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 341: 544–546.

    Article  CAS  Google Scholar 

  33. Ward, E.S. 1992. Secretion of soluble T cell receptor fragments from recombinant Escherichia coli cells J. Mol. Biol. 224: 885–890.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghetie, V., Popov, S., Borvak, J. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15, 637–640 (1997). https://doi.org/10.1038/nbt0797-637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing