Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Different Mechanisms Protect Transgenic Tobacco Against Tomato Spotted Wilt and Impatiens Necrotic Spot Tospoviruses

Abstract

We generated transgenic tobacco plants expressing the sense or antisense untranslatable N coding sequence of the lettuce isolate of tomato spotted wilt virus (TSWV-BL) as well as transgenic plants containing the promoterless N gene of the virus. Both sense and antisense untranslatable N gene RNAs provided protection against homologous and closely related isolates but not against distantly related Tospoviruses. These RNA-mediated protections were most effective in plants that synthesized low levels of the respective RNA species and appears to be achieved through the inhibition of viral replication. Unlike the sense RNA-mediated protection, the level of the antisense RNA-mediated protection depended on the concentration of the inoculum and the size of the test plants. Comparisons with previous results in transgenic plants expressing the intact N gene suggest that resistance to homologous and closely related TSWV isolates in plants that express low levels of the translatable N gene is due to the presence of the N gene transcript and not the N protein. In contrast, resistance to distantly related Tospoviruses is due to accumulation of high levels of the N protein and not due to the presence of the N gene transcript.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Francki, R.I.B., Fauquet, C.M., Knudson, D.L. and Brown, F. 1991. Classification and nomenclature of viruses. Fifth report of the international committee on taxonomy of viruses. Archives of Virology, Supplementum 2, pp. 281–283.

    Google Scholar 

  2. Elliott, R.M. 1990. Molecular biology of the Bunyaviridae. J. Gen. Virol. 71: 501–522.

    Article  CAS  Google Scholar 

  3. Cho, J.J., Mau, R.F.L., German, T.L., Hartman, R.W., Yudin, L.S., Gonsalves, D. and Provvidenti, R. 1989. A multidisciplinary approach to management of tomato spotted wilt virus in Hawaii. Plant Disease 73: 375–383.

    Article  Google Scholar 

  4. Law, M.D. and Mover, J.W. 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71: 933–938.

    Article  CAS  Google Scholar 

  5. German, T.L., Ullman, D.E. and Moyer, J.W. 1992. Tospoviruses: diagnosis, molecular biology, phytogeny, and vector relationships. Ann. Rew. Phytopathol. 30: 315–348.

    Article  CAS  Google Scholar 

  6. Mohamed, N.A., Randles, J.W. and Francki, I.I.B. 1973. Protein composition of tomato spotted wilt virus. Virol. 56: 12–21.

    Article  CAS  Google Scholar 

  7. Tas, P.W.L., Boerjan, M.L. and Peters, D. 1977. The structural proteins of tomato spotted wilt virus. J. Gen. Virol. 36: 267–279.

    Article  Google Scholar 

  8. de Haan, P., Kormelink, R., De Oliveira Resende, R., Van Poelwijk, F., Peters, D. and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71: 2207–2216.

    Article  Google Scholar 

  9. Law, M.D., Speck, J. and Moyer, J.W. 1992. The nucleotide sequence and genomic organization of the impatiens necrotic spot tospovirus M RNA. Virology 188: 732–741.

    Article  CAS  Google Scholar 

  10. Kormelink, R., de Haan, P., Meurs, C., Peters, D. and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73: 2795–2804.

    Article  CAS  Google Scholar 

  11. de Haan, P., Wagemakers, L., Peters, D. and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 001–007.

    Article  Google Scholar 

  12. Law, M.D., Speck, J. and Moyer, J.W. 1991. Nucleotide sequence of the 3′ non-coding region and N gene of the S RNA of a serologically distinct Tospovirus. J. Gen. Virol. 72: 2597–2601.

    Article  CAS  Google Scholar 

  13. Maiss, E., Ivanova, L., Breyel, E. and Adam, G. 1991. Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus. J. Gen. Virol. 72: 461–464.

    Article  CAS  Google Scholar 

  14. Pang, S.-Z., Slightom, J.L. and Gonsalves, D. 1993. The biological properties of a distinct Tospovirus and sequence analysis of its S RNA. Phytopathology In press

    Google Scholar 

  15. Chohan, J.S. 1972. Final Progr. Rep. ICAR Scheme Res. Important Dis. Groundnut in the Punjab for the Period 1957-1967. Dep. Plant Pathol., Punjab Agric. Univ., Ludiana, p. 177.

  16. Ghanekar, A.M., Reddy, D.V.R., Iizuka, N., Amin, P.W. and Gibbons, R.W. 1979. Bud necrosis of groundnut (Arachis hypogaea) in India caused by tomato spotted wilt virus. Ann. Appl. Biol. 93: 173–79.

    Article  Google Scholar 

  17. Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K. and Yokoyama, T. 1984. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Disease 68: 1006–1008.

    Article  Google Scholar 

  18. de Avila, A.C., Huguenot, C., Resende, R.deO., Kitajima, E.W., Goldbach, R.W. and Peters, D. 1990. Serological differentiation of 20 isolates of tomato spotted wilt virus. J. Gen. Virol. 71: 2801–7.

    Article  CAS  Google Scholar 

  19. Reddy, D.V.R., Sudarshana, A.S., Ratna, A.S., Reddy, A.S. and Amin, P.W. 1991. The occurrence of yellow spot virus, a member of tomato spotted wilt virus group, on peanut (Arachia hypogaea L.) in India. USDA workshop, US Dep. Agric. Agric. Res. Serv., ARS, p. 77–88.

  20. Adam, G., Lesemann, D.E. and Vetten, H.J. 1991. Monoclonal antibodies against tomato spotted wilt virus: characterization and application. Ann. Appl. Biol. 118: 87–104.

    Article  Google Scholar 

  21. Kameyi-Iwake, M., Hanada, K., Honda, K. and Tochihara, H. 1988. A watermelon strain of tomato spotted wilt virus (TSWV-W) and some properties of its nucleocapsid. Int. Congr. Plant Pathol., 5th, Kyoto, Japan.

    Google Scholar 

  22. Yeh, S.-D., Lin, Y.-C., Cheng, Y.-H., Jin, C.-L. and Chen, M.-J. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Disease 76: 835–840.

    Article  Google Scholar 

  23. Wang, M. and Gonsalves, D. 1990. ELISA detection of various tomato spotted wilt virus isolates using specific antisera to structural proteins of the virus. Plant Disease 74: 154–158.

    Article  Google Scholar 

  24. de Avila, A.C., de Haan, P., Kormelink, R., Resende, R.de O., Goldbach, R.W. and Peters, D. 1993. Classification of tospoviruses based on phytogeny of nucleoprotein gene sequences. J. Gen. Virol. 74: 153–159.

    Article  CAS  Google Scholar 

  25. Sanford, J.C. and Johnston, S.A. 1985. The concept of parasite-derived resistance-deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113: 395–405.

    Article  Google Scholar 

  26. Hull, R. and Davies, J.W. 1992. Approaches to nonconventional control of plant virus diseases. Critical Reviews in Plant Sciences 11: 17–33.

    Article  CAS  Google Scholar 

  27. Golemboski, D.B., Lomonossoff, G.P. and Zaitlin, M. 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87: 6311–6315.

    Article  CAS  Google Scholar 

  28. Braun, C.J. and Hemenway, C.L. 1992. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. The Plant Cell 4: 735–744.

    Article  CAS  Google Scholar 

  29. Kawchuk, L.M., Martin, R.R. and McPherson, J. 1991. Sense and antisense RNA-mediated resistance to potato leafroll virus in russet burbank potato plants. Mol. Plant-Microbe Interact. 4: 247–253.

    Article  CAS  Google Scholar 

  30. Lindbo, J.A. and Dougherty, W.G. 1992. Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Interact. 5: 144–153.

    Article  CAS  Google Scholar 

  31. Lindbo, J.A. and Dougherty, W.G. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733.

    Article  CAS  Google Scholar 

  32. de Haan, P., Gielen, J.J.L., Prins, M., Wijkamp, I.G., van Schepen, A., Peters, D., van Grinsven, M.Q.J.M. and Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10: 1133–1137.

    CAS  PubMed  Google Scholar 

  33. Gielen, J.J.L., de Haan, P., Kool, A.J., Peters, D., van Grinsven, M.Q.J.M. and Goldbach, R.W. 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technology 9: 1363–1367.

    Article  CAS  Google Scholar 

  34. MacKenzie, D.J. and Ellis, P.J. 1992. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol. Plant-Microbe Interact. 5: 34–40.

    Article  CAS  Google Scholar 

  35. Pang, S.-Z., Nagpala, P., Wang, M., Slightom, J.L. and Gonsalves, D. 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82: 1223–1229.

    Article  CAS  Google Scholar 

  36. Ow, D.W., Jacobs, J.D. and Howell, S.H. 1987. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc. Natl. Acad. Sci. USA. 84: 4870–4874.

    Article  CAS  Google Scholar 

  37. Rochow, W.F. 1970. Barley yellow dwarf virus: phenotypic mixing and vector specificity. Science 167: 875–878.

    Article  CAS  Google Scholar 

  38. Bourdin, D. and Lecoq, H. 1991. Evidence that heteroencapsidation between two potyviruses is involved in aphid transmission of a non-aphid-transmissible isolate from mixed infections. Phytopathol. 81: 1459–1464.

    Article  Google Scholar 

  39. Osbourn, J.K., Sakar, S. and Wilson, M.A. 1990. Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179: 921–925.

    Article  CAS  Google Scholar 

  40. Holt, C.A. and Beachy, R.N. 1991. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181: 109–117.

    Article  CAS  Google Scholar 

  41. Farinelli, L., Malnoe, P. and Collet, G.F. 1992. Heterologous encapsidation of patato virus Y strain O (PVY°) with the transgenic coat protein of PVY strain N (PVYn) in Solarium tulerosum cv. Bintje. Bio/Technology 10: 1020–1025.

    CAS  Google Scholar 

  42. Pang, S.-Z., Rasmussen, J., Ye, G.N. and Sanford, J.C. 1992. Use of the signal peptide of Pisum vicilin to translocate β-glucuronidase in Nicotiana tabacum Gene 112: 229–234.

    Article  CAS  Google Scholar 

  43. Holsters, M., Waele, D., Depicker, A., Messens, E., Montagu, M. and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181–187.

    Article  CAS  Google Scholar 

  44. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  45. Gonsalves, D. and Trujillo, E.E. 1986. Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Disease 70: 501–506.

    Article  Google Scholar 

  46. Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant cell 2: 279–289.

    Article  CAS  Google Scholar 

  47. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  48. Negy, J.I. and Maliga, P. 1976. Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Z. Pflanzenphysiol. 78: 453–455.

    Article  Google Scholar 

  49. Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. 1987. Hybrid genes in the analysis of transformation conditions. Plant Mol. Biol. 8: 363–373.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, SZ., Slightom, J. & Gonsalves, D. Different Mechanisms Protect Transgenic Tobacco Against Tomato Spotted Wilt and Impatiens Necrotic Spot Tospoviruses. Nat Biotechnol 11, 819–824 (1993). https://doi.org/10.1038/nbt0793-819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0793-819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing