Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Loops and Secondary Structure Mimetics: Development and Applications in Basic Science and Rational Drug Design

Abstract

One goal of protein design and structural biochemistry is the reduction of complex molecules to small functional units that are amenable to high resolution analysis and rapid modification. We have developed a variety of small molecules which biochemically and biologically mimic the combining sites of proteins of the immunoglobulin superfamily. The chemical and biological properties of peptide mimetics suggest that these analogs can be used as indicators for new pharmaceutical agents. Mimetics are powerful tools for the study of molecular recognition since they are small in size, maintain solubility in physiologic fluids and are amenable to detailed structural studies. As such, they represent a step toward the rational design of low molecular weight non–peptide pharmaceutical agents devoid of some of the shortcomings of conventional peptides. Here we discuss the rationale and approaches for the development of these molecules, and their current and future applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marshall, G.R., Gorin, F.A. and Moore, M.L. Peptide conformation and biological activity. Ann. Rep. Med. Chem 13: 227–238.

  2. Hruby, V.J., Al-Obeidi, F. and Kazmierski, W. 1990. Emerging approaches in the molecular design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. Biochem J. 268: 249–262.

    Article  CAS  Google Scholar 

  3. Tobias, D.J., Sneddon, S.F. and Brooks, C.L. III. 1990. Reverse turns in blocked dipeptides are intrinsically unstable in water. J. Mol. Biol. 216: 783–796.

    Article  CAS  Google Scholar 

  4. Mutter, M. 1988. Nature's rules and chemist's tools: a way for creating novel proteins. Trends Biochem. Sci. 13(7): 260–265.

    Article  CAS  Google Scholar 

  5. Saragovi, H.U., Fitzpatrick, D., Raktabuhr, A., Nakanishi, H., Kahn, M. and Greene, M.I. 1991. Design and synthesis of a mimetic of an antibody complementarity region. Science 253: 792–795.

    Article  CAS  Google Scholar 

  6. Chen, S., Chrusciel, R.A., Nakanishi, H., Raktabuhr, A., Sato, A., Weiner, D.B., Hoxie Saragovi, H.U., Greene, M.I. and Kahn, M. 1992. Design and synthesis of a β-turn mimetic that inhibit HIVgpl20 binding and infection of human lymphocytes. Proc. Natl. Acad. Sci. USA. In press.

  7. Rose, G.D., Gierasch, L.M. and Smith, J.A. 1985. Turns in peptides and proteins. Adv. Protein Chem. 37: 1–109.

    Article  CAS  Google Scholar 

  8. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. 1977. The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112: 535–542.

    Article  CAS  Google Scholar 

  9. Sibanda, B.L., Blundell, T.L. and Thornton, J.M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. 1989. J. Mol. Biol. 206: 759–777.

    Article  CAS  Google Scholar 

  10. Martin, A.C.R., Cheetham, C. and Rees, A.R. 1989. Modeling antibody hypervariable loops: a combined algorithm. Proc. Natl. Acad. Sci. USA 86: 9268–9272.

    Article  CAS  Google Scholar 

  11. Williams, W.V., Guy, R.H., Rubin, D.H., Robey, F., Myers, J.N., Richer-Emmons, T., Weiner, D.B. and Greene, M.I. Sequences of the cell-attachment sites of the reovirus type 3 and its anti-idiotypic/anti-receptor antibody: modeling of their three dimensional structures. Proc. Natl. Acad. Sci. USA 85: 6488–6490.

    Article  CAS  Google Scholar 

  12. Williams, W.V., Emmons, T., Weiner, D.B., Rubin, D.H. and Greene, M.I. 1991. Contact residues and predicted structures of the reovirus type 3-receptor interaction. J. Biol. Chem. 266: 9241–9250.

    CAS  PubMed  Google Scholar 

  13. Williams, W.V., Moss, D.A., Kieber-Emmons, T., Cohen, J.A., Myers, J.N., Weiner, D.B. and Greene, M.I. 1989. Development of biologically active peptides based on antibody structure. Proc. Natl. Acad. Sci. USA 86: 5537–5541.

    Article  CAS  Google Scholar 

  14. Taub, R., Gould, R.J., Ciccarone, T.M., Hoxie Friedman, P.A., Shattil, S.J. and Garsky, V.M. 1989. A monoclonal antibody against the platelet fibrinogen receptor contains a sequence that mimics a receptor recognition domain in fibrinogen. J. Biol. Chem. 264: 259–265.

    CAS  PubMed  Google Scholar 

  15. Weiner, D.B., Williams, W.V., Merva, M.J., Berzofsky, J.A. and Greene, M.I. 1990. In: Vaccines, 339–345. Cold Spring Harbor Press, NY.

    Google Scholar 

  16. Capon, D.J., Chamow, S.M., Mordenti, J., Marstrs, S.A., Gregory, T., Mitsuya, H., Byrn, R.A., Lucas, C., Wurm, F.M. and Groopman, J.E. 1989. Designing CD4 immunoadhesins for AIDS therapy. Nature 337: 525–531.

    Article  CAS  Google Scholar 

  17. Ishida, T., Yoneda, S., Doi, M., Inoue, M. and Kitamura, K. 1988. Molecular dynamics simulations of (Met5)-and (D-Ala2, Met5)-enkephalins. Biological implications of monomeric folded and dimeric unfolded conformations. Biochem. J. 255: 621–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, G.D. and Griffin, J.F. 1978. Conformation of [Leu5]Enkephalin from X-ray diffraction: features important for recognition at opiate receptor. Science 199: 1214–1216.

    Article  CAS  Google Scholar 

  19. Bugg, C.E., Ealick, S.E., Montgomery, J.A., Secrist, J.A., Babu, Y.S., Erion, M.D. and Gulda, W.C. 1992. In: Techniques in Protein Chemistry III. Angelets, R. (Ed.). The Protein Society Academic Press, NY.

    Google Scholar 

  20. Knighton, D.R., Zheng, G.H., Ten Eyck, L.E., Ashford, V.A., Xuong, N.H., Taylor, S.S. and Sowadski, J.M. 1991. Crystal structure of the catalytic subunit of cylcic adenosine monophosphate-dependent protein kinase. Science 253: 407–414.

    Article  CAS  Google Scholar 

  21. Knighton, D.R., Zheng, G.H., Ten Eyck, L.F., Xuong, N.H., Taylor, S.S. and Sowadski, J.M. 1991. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 414–420.

    Article  CAS  Google Scholar 

  22. Bowie, J.U. and Sauer, R.T. 1989. Identifying determinants of folding and activity for a protein of unknown structure. Proc. Natl. Acad. Sci. USA 86: 2152–2156.

    Article  CAS  Google Scholar 

  23. Zurawski, S.M., Imler, J.L. and Zurawski, G. 1990. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction. EMBO J. 9: 3899–3905.

    Article  CAS  Google Scholar 

  24. Evans, B.E., Bock, M.G., Rittle, K.E., DiPardo, R.M., Whitter, W.L., Veber, D.F., Anderson, P.S. and Freidinger, R.M. 1986. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystoki-nin. Proc. Natl. Acad. Sci. USA 83: 4918–4922.

    Article  CAS  Google Scholar 

  25. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M. and Knapp, R.J. 1991. A new type of synthetic peptide library for identifying ligand binding activity. Nature 354: 82–84.

    Article  CAS  Google Scholar 

  26. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354: 84–86.

    Article  CAS  Google Scholar 

  27. Fodor, S.P., Read, J.C., Pirrung, M.C., Stryer, L., Lu, A.T. and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773.

    Article  CAS  Google Scholar 

  28. Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

    Article  CAS  Google Scholar 

  29. Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J. 1990. Peptides on phage, a vast library of perptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87: 6387–6382.

    Article  Google Scholar 

  30. Devlin, J.J., Panganiban, L.C. and Devlin, P.E. 1990. Random peptide libraries: a source of specific protein binding molecules. Science 249: 404–406.

    Article  CAS  Google Scholar 

  31. Finberg, R.W., Diamond, D.C., Mitchell, D.B., Rosenstein, Y., Soman, G., Norman, T.C., Schreiber, S.L. and Burakoff, S.J. 1990. Prevention of HIV I infection and preservation of CD4 function by the binding of CPFs to gp120. Science 249: 287–291.

    Article  CAS  Google Scholar 

  32. Williams, W.V., Weiner, D.B., Kieber-Emmons, T. and Greene, M.I. 1990. Antibody geometry and form: three-dimensional relationships between anti-idiotypic antibodies and external antigens. Trends in Biotechnology 8: 256–263.

    Article  CAS  Google Scholar 

  33. Kieber Emmons, T. and Kohler, H. 1986. Towards a unified theory of immunoglobulin structure function relations. Immunol. Rev. 90: 29–48.

    Article  CAS  Google Scholar 

  34. Kieber-Emmons, T., Williams, W.V. and Greene, M.I. 1991. Anti receptor antibody structure and peptide design, p. 53–63. Monoclonal Antibodies: Applications in Clinical Oncology. A. Epenetos (Ed.) Chapman and Hall Medical Publishers, UK.

    Google Scholar 

  35. Williams, A.F. 1987. A year in the life of the immunoglobulin superfamily. Immunology Today. 8: 298–303.

    Article  CAS  Google Scholar 

  36. Eisenberg, D., Wilcox, W., Eshita, S.M., Pryciak, P.M., Peng Ho, S. and deGrado, W.F. 1986. The design, synthesis, and crystallization of an alpha-helical peptide. Proteins 1: 16–22.

    Article  CAS  Google Scholar 

  37. Anthony-Cahill, S.J., Benfield, P.A., Fairman, R., Wasserman, Z.R., Brenner, S.L., Stafford, W.F. III, Altenbach, C., Hubbell, W.L. and deGrado, W.F. 1992. Molecular characterisation of helix-loop-helix peptides. Science 255: 79–83.

    Article  Google Scholar 

  38. Karle, I.L., Flippen Anderson, J.L., Sukumar, M. and Balaram, P. 1992. Helix packing of leucine-rich peptides: a parallel leucine ladder in the structure of Boc-Aib-Leu-Aib-I. eu-Leu-Leu-Aib-Leu-Aib-Ome. Proteins 12: 324–330.

    Article  CAS  Google Scholar 

  39. Becker, T., Weber, K. and Johnsson, N. 1990. Protein protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 9: 4207–4213.

    Article  CAS  Google Scholar 

  40. deVos, A.M., Ultsch, M. and Kossiakoff, A.A. 1992. Human growth hormone and extracelular domain of its receptor: crystal structure of the complex. Science 255: 306–312.

    Article  CAS  Google Scholar 

  41. Waldmann, T.A. 1991. Monoclonal antibodies in diagnosis and therapy. Science 252: 1657–1662.

    Article  CAS  Google Scholar 

  42. Watanabe, M., Chen, Z.W., Tsubota, H., Lord, C.I., Levine, C.G. and Letvin, N.L. 1991. Soluble human CD4 elicits an antibody response in rhesus monkeys that inhibits simian immunodeficiency virus replication. Proc. Natl. Acad. Sci. USA 88: 120–124.

    Article  CAS  Google Scholar 

  43. Olson, G.L., Voss, M.E., Hill, D.E., Kahn, M., Madison, V.S. and Cook, C.M. 1990. Design and synthesis of a protein beta turn mimetic. Jour. Am. Chem. Soc. 112: 323–333.

    Article  CAS  Google Scholar 

  44. Kahn, M., Wilke, S., Chen, B., Fujita, K., Lee, Y.H. and Johnson, M.E. 1988. The design and synthesis of mimetics of peptide beta-turns. J. Mol. Recognition 1: 75–79.

    Article  CAS  Google Scholar 

  45. Ball, J.B. and Alewood, P.F. 1990. Conformational constraints: nonpeptide beta-turn mimics. J. Mol. Recognition. 3: 55–64.

    Article  CAS  Google Scholar 

  46. Williams, A.F. and Barclay, A.N. 1988. The immunoglobulin superfamily -domains for cell surface recognition. Annual Review of Immunol. 6: 381–405.

    Article  CAS  Google Scholar 

  47. Ryu, S.E., Kwong, P.D., Truneh, A., Porter, T.B., Arthos. J., Rosenberg, M., Dai, X.P., Xuong, N.H., Axel, R., Sweet, R.W. and Hendrikson, M. 1990. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348: 419–426.

    Article  CAS  Google Scholar 

  48. Brodsky, M.H., Warton, M., Myers, R.M. and Littman, D.R. 1990. Analysis of the site in CD4 that binds to the HIV envelope glycoprotein. J. Immunol. 144: 3078–3086.

    CAS  PubMed  Google Scholar 

  49. IveyHoyle, M., Culp, J.S., Chaikin, M.A., Hellmig, B.D., Matthews, T.J., Sweet, R.W. and Rosenberg, M. 1991. Envelope glycoproteins from biologically active diverse isolates of immunodeficiency viruses have widely different affinities for CD4. Proc. Natl. Acad. Sci. USA 88: 512–516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saragovi, H., Greene, M., Chrusciel, R. et al. Loops and Secondary Structure Mimetics: Development and Applications in Basic Science and Rational Drug Design. Nat Biotechnol 10, 773–778 (1992). https://doi.org/10.1038/nbt0792-773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0792-773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing