Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High-Level Expression and In Vivo Processing of Chimeric Ubiquitin Fusion Proteins in Saccharomyces Cerevisiae

Abstract

We have developed a system for the regulatable production of high levels of correctly processed heterologous proteins in the yeast Saccharomyces cerevisiae. An expression vector, pBS24Ub, that contains a synthetic gene for yeast ubiquitin (Ub) was constructed. The gene was expressed under the control of a glucose regulatable alcohol dehydrogenase-2/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP) hybrid promoter. Inclusion of unique restriction sites at the 3′-end of the synthetic gene allowed for the precise in-frame insertion of heterologous genes. Expression of chimeric Ub/human γ-interferon (γ-IFN) and Ub/α1-proteinase inhibitor (α1-PI) genes produced fusion proteins that were cleaved quantitatively and precisely in vivo, by an endogenous ubiquitin-specific proteinase, to yield γ-IFN and α1-PI containing authentic amino termini. In contrast, γ-IFN and α1-PI, like many other heterologous proteins usually retain their initiation codon-derived methionine residues when expressed directly in bacteria or yeast. The in vivo ubiquitin fusion approach may provide a general method for circumventing problems associated with this additional methionine residue, for pharmaceutical proteins, and for other recombinant polypeptides where amino-terminal authenticity is desirable or critical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsunasawa, S., Stewart, J.W., and Sherman, F. 1985. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. J. Biol. Chem. 260:5382–5391.

    CAS  PubMed  Google Scholar 

  2. Ben-Bassat, A., Bauer, K., Chang, S-Y., Myambo, K., Boosman, A., and Chang, S. 1987. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol. 169:751–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachmair, A., Finley, D., and Varshavsky, A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.

    Article  CAS  PubMed  Google Scholar 

  4. Varshavsky, A., Bachmair, A., Finley, D., Gonda, D., and Wunning, I. 1988. The N-end rule of selective protein turnover: Mechanistic aspects and functional implications, p 287–324. In: Ubiquitin. Rech-steiner, M. (Ed.) Plenum Press, New York.

    Chapter  Google Scholar 

  5. Varshavsky, A., Bachmair, A., Finley, D., Gonda, D., and Wunning, I. 1989. Targeting of proteins for degradation, p 209–143. In: Yeast Genetic Engineering. Barr, P. J., Brake, A. J., and Valenzuela, P. (Eds.) Butterworths, New York.

    Google Scholar 

  6. Arfin, S.M. and Bradshaw, R.A. 1988. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27:7979–7984.

    Article  CAS  PubMed  Google Scholar 

  7. Goeddel, D.V., Heyneker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D. G., Ross, M.J., Miozzari, G., Crea, R., and Seeburg, P.H. 1979. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281:544–548.

    Article  CAS  PubMed  Google Scholar 

  8. Schoner, B.E., Hsiung, H.M., Belagaje, R.M., Mayne, N.G., and Schoner, R.G. 1984. Role of mRNA translational efficiency in bovine growth hormone expression in Eschemhia coli. Proc. Natl. Acad. Sci. USA 81:5403–5407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ben-Bassat, A. and Bauer, K. 1987. Amino-terminal processing of proteins. Nature 326:315.

    Article  Google Scholar 

  10. Travis, J., Owen, M., George, P., Carrell, R., Rosenberg, S., Hallewell, R.A., and Barr, P.J. 1985. Isolation and properties of recombinant DNA produced variants of human a1-proteinase inhibitor. J. Biol. Chem. 260:4384–4389.

    CAS  PubMed  Google Scholar 

  11. Linemeyer, D.L., Kelly, L.J., Menke, J.G., Gimenez-Gallego, G., DiSalvo, J., and Thomas, K. A. 1987. Expression in Escherichia coli of a chemically synthesized gene for biologically active bovine fibroblast growth factor. Bio/Technology 5:960–965.

    CAS  Google Scholar 

  12. Nakagawa, S., Yamada, T., Kato, K., and Nishimura, O. 1987. Enzymatic cleavage of amino terminal methionine from recombinant human interleukin 2 and growth hormone by aminopeptidase M. Bio/Technology 5:824–827.

    CAS  Google Scholar 

  13. Sung, W.L., Yao, F.L., Zahab, D.M., and Narang, S.A. 1986. Short synthetic oligodeoxyribonucleotide leader sequences enhance accumulation of human proinsulin synthesized in Escherichia coli . Proc. Natl. Acad. Sci. USA: 83:561–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dalboge, H., Dahl, H-H.M., Pederson, J., Hansen, J.W., and Chris-tensen, T. 1987. A novel enzymatic method for production of authentic hGH from an Escherichia coli produced hGH-precursor. Bio/Technology 5:161–164.

    Google Scholar 

  15. Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L., and Conlon, P.J. 1988. A short polypep-tide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6:1204–1210.

    Article  CAS  Google Scholar 

  16. Germino, J. and Bastia, D. 1984. Rapid purification of a cloned gene product by genetic fusion and site-specific proteolysis. Proc. Natl. Acad. Sci. USA 81:4692–4696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagai, K. and Thogerson, H.C. 1987. Synthesis and sequence specific proteolysis of hybrid proteins produced in Escherichia coli . Meth. Enzymol. 153:461–481.

    Article  CAS  Google Scholar 

  18. Ozkaynak, E., Finley, D., and Varshavsky, A. 1984. The yeast ubiqui-tin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312:663–666.

    Article  CAS  PubMed  Google Scholar 

  19. Ozkaynak, E., Finley, D., Solomon, M.J., and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6:1429–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finley, D., Bartel, B., and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401.

    Article  CAS  PubMed  Google Scholar 

  21. Wiborg, O., Pederson, M.S., Wind, A., Berglund, L.E., Marcker, K.A., and Vuust, J. 1985. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4:755–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, H., Simon, J.A., and Lis, J.T. 1988. Structure and expression of ubiquitin genes of Drosophila melanogaster . Mol. Cell. Biol. 8:4727–4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cousens, L.S., Shuster, J.R., Gallegos, C., Ku, L., Stempien, M. M., Urdea, M.S., Sanchez-Pescador, R., Taylor, A., and Tekamp-Olson, P. 1987. High level expression of proinsulin in the yeast, Saccharomyces cerevisiae . Gene. 61:265–275.

    Article  CAS  PubMed  Google Scholar 

  24. Barr, P.J., Gibson, H.L., Enea, V., Arnot, D.E., Hollingdale, M.R., and Nussenzweig, V. 1987. Expression in yeast of a Plasmodium vivax antigen of potential use in a human malaria vaccine. J. Exp. Med. 165:1160–1171.

    Article  CAS  PubMed  Google Scholar 

  25. Barr, P.J., Cousens, L.S., Lee-Ng, C.T., Medina-Selby, A., Masiarz, F.R., Hallewell, R.A., Chamberlain, S., Bradley, J., Steimer, K.S., Esch, F., and Baird, A. 1988. Expression and processing of biologically active fibroblast growth factors in the yeast Saccharomyces cerevisiae . J. Biol. Chem. 263:16471–16478.

    CAS  PubMed  Google Scholar 

  26. Recombinant human interferon gamma (S-6810) research group on renal carcinoma. 1987. Phase II study of recombinant human interferon gamma (S-6810) on renal cell carcinoma. Cancer 60:929–933.

  27. Casolaro, M.A., Fells, G., Wewers, M., Pierce, J.E., Ogushi, F., Hubbard, R., Sellers, S., Forstrom, J., Lyons, D., Kawasaki, G., and Crystal, R. G. 1987. Augmentation of lung antineutrophil elastase capacity with recombinant human α1-andtrypsin. J. Appl. Physiol. 63:2015–2023.

    Article  CAS  PubMed  Google Scholar 

  28. Colman, R.W., Flores, D.N., De La Cadena, R.A., Scott, C.F., Cousens, L., Barr, P.J., Hoffman, I.B., Kueppers, F., Fisher, D., Idell, S., and Pisarello, J. 1988. Recombinant α1-antitrypsin Pittsburgh attenuates experimental gram-negative septicemia. Am. J. Pathol. 130:418–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. George, P., Pemberton, P., Bathurst, I.C., Carrell, R., Gibson, H.L., Rosenberg, S., Hallewell, R.A., and Barr, P.J. 1989. Characterization of antithrombins produced by active site mutagenesis of human a1-antitrypsin expressed in yeast. Blood 73:490–496.

    CAS  PubMed  Google Scholar 

  30. Van Brunt, J. 1986. Fungi: The perfect hosts? Bio/Technology 4:1057–1062.

    Article  CAS  Google Scholar 

  31. LeGendre, N. and Matsudaira, P. 1988. Direct protein microsequenc-ing from Immobilon-P transfer membrane. BioTechniques 6:154–159.

    CAS  PubMed  Google Scholar 

  32. Rinderknecht, E., O'Connor, B.H., and Rodriquez, H. 1984. Natural human interferon-γ. J. Biol. Chem. 259:6790–6797.

    CAS  PubMed  Google Scholar 

  33. Butt, T.R., Khan, M.I., Marsh, J., Ecker, D.J., and Crooke, S. T. 1988. Ubiquitin-metallothionein fusion protein expression in yeast. J. Biol. Chem. 263:16364–16371.

    CAS  PubMed  Google Scholar 

  34. Barr, P.J., Shuster, J.R., Bathurst, I.C., Cousens, L.S., Lee-Ng, C.T., Gibson, H.L., and Sabin, E. A. 1988. Production of recombinant DNA-derived pharmaceuticals in the yeast Saccharomyces cerevmae . Yeast 4: S24 (Abstr.).

  35. Rosenberg, S.R., Barr, P.J., Najarian, R.C., and Hallewell, R.A. 1984. Synthesis in yeast of a functional, oxidation-resistant active center mutant of human alpha1-antitrypsin. Nature 312:77–79.

    Article  CAS  PubMed  Google Scholar 

  36. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  37. Hinnen, A., Hicks, J.B., and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubinstein, S., Familletti, P.C., and Pestka, S. 1981. Convenient assay for interferons. J. Virol. 37:755–758.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabin, E., Lee-Ng, C., Shuster, J. et al. High-Level Expression and In Vivo Processing of Chimeric Ubiquitin Fusion Proteins in Saccharomyces Cerevisiae. Nat Biotechnol 7, 705–709 (1989). https://doi.org/10.1038/nbt0789-705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0789-705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing