Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering

Abstract

We report the engineering of Lactococcus lactis to produce the amino acid l-alanine. The primary end product of sugar metabolism in wild-type L. lactis is lactate (homolactic fermentation). The terminal enzymatic reaction (pyruvate + NADH→l-lactate + NAD+) is performed by l-lactate dehydrogenase (l-LDH). We rerouted the carbon flux toward alanine by expressing the Bacillus sphaericus alanine dehydrogenase (l-AlaDH; pyruvate + NADH + NH4+→l-alanine + NAD+ + H2O). Expression of l-AlaDH in an l-LDH-deficient strain permitted production of alanine as the sole end product (homoalanine fermentation). Finally, stereospecific production (>99%) of l-alanine was achieved by disrupting the gene encoding alanine racemase, opening the door to the industrial production of this stereoisomer in food products or bioreactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rerouting carbon flux toward l-alanine by overproduction of alanine dehydrogenase (l-AlaDH) in an l-lactate dehydrogenase (l-LDH) and alanine racemase (ALR)-deficient strain.
Figure 2: Nisin-dependent overproduction of alanine dehydrogenase.
Figure 3: Alanine production as a function of nisin concentration and ammonium supply.
Figure 4: End products formation by cell suspensions of the wild-type NZ3900 strain (black bars) and the l-LDH–deficient NZ3950 strain (hatched bars), each harboring pNZ2650.
Figure 5: Time course of glucose consumption and alanine and lactate production by (A) the wild-type NZ3900 strain and (B) the l-LDH–deficient NZ3950 strain, each containing pNZ2650.
Figure 6

Similar content being viewed by others

References

  1. Leuchtenberger, W. in Products of primary metabolism Vol. 6 (vol. ed. Roehr, M.). Biotechnology (eds Rhem, H.-J., Reed, G., Pühler, A. & Stadler, P.J.W.) 465–502 (VCH Verlagsgesellschaft mbH, Weinheim, Germany; 1996).

    Google Scholar 

  2. Hirose, Y. & Okada, H. in Microbial technology, microbial process (eds Peppler, H.J. & Perlman, D.) 211–240 (Academic, New York; 1979).

    Google Scholar 

  3. Yamamoto, T., Kato, T., Matsuo, R., Kawamura, Y. & Yoshida, M. Gustatory reaction time to various sweeteners in human adults. Physiol. Behav. 35, 411–415 (1985).

    Article  CAS  Google Scholar 

  4. Kitai, A. in The microbial production of amino acids (eds Yamada, K., Kinoshita, S., Tsunoda, T. & Aida, K.) 325–337 (Kodansha Ltd, Tokyo, John Wiley and Sons, New York ; 1972).

    Google Scholar 

  5. Ravot, G. et al. l-alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62, 2657–2659 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Orlygsson, J., Anderson, R. & Svensson, B.H. Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2. Antonie Van Leeuwenhoek 68, 273–280 (1995).

    Article  CAS  Google Scholar 

  7. Hashimoto, S.-I. & Katsumata, R. Overproduction of alanine by Arthrobacter strains with glucose-nonrepressible l-alanine dehydrogenase. Biotechnol. Lett. 15, 1117–1122 (1993).

    Article  CAS  Google Scholar 

  8. Furui, M. & Yamashita, K. Pressurized reaction method for continious production of l-alanine by immobilized Pseudomonas dacunhae cells. J. Ferment. Technol. 61, 587–591 (1983).

    CAS  Google Scholar 

  9. Galkin, A., Kulakova, L., Yoshimura, T., Soda, K. & Esaki, N. Synthesis of optically active amino acids from α-keto acids with Eschericihia coli cells expressing heterologous genes. Appl. Environ. Microbiol. 63, 4651–4656 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlenbusch, I., Sahm, H. & Sprenger, G.A. Expression of the l-alanine dehydrogenase gene in Zymomonas mobilis and excretion of l-alanine. Appl. Environ. Microbiol. 57, 1360–1366 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eikmanns, B., Sham, H. & Sprenger, G. Metabolic design bei Bakterien: gezielte Entwicklung von aminosäureproduzierenden Bakterien mit Hilfe der Gentechnik Bioscope 2/95, 39–45 (1995).

    Google Scholar 

  12. de Vos, W.M. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 223–242 (1996).

    Article  CAS  Google Scholar 

  13. Ohashima, T. & Soda, K. Purification and properties of alanine dehydrogenase from Bacillus sphaericus. Eur. J. Biochem. 100, 29–39 (1979).

    Article  CAS  Google Scholar 

  14. Hillier, A.J. & Jago, G.R. l-lactate dehydrogenase, FDP-activated, from Streptococcus cremoris. Methods Enzymol. 89, 362–367 (1982).

    Article  CAS  Google Scholar 

  15. de Ruyter, P.G.G.A., Kuipers, O.P. & de Vos, W.M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62, 3662–3667 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuipers, O.P., de Ruyter, P.G.G.A., Kleerebezem, M. & de Vos, W.M. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15, 135–140 (1997).

    Article  CAS  Google Scholar 

  17. Kuroda, S., Tanizawa, K., Sakamoto, Y., Tanaka, H. & Soda, K. Alanine dehydrogenases from two Bacillus species with distinct thermostabilities: molecular cloning, DNA and protein determination and structural comparison with other NAD(P)+-dependent dehydrogenases. Biochemistry 29, 1009–1015 (1990).

    Article  CAS  Google Scholar 

  18. Platteeuw, C., Hugenholtz, J., Starrenburg, M., Alen-Boerrigter, I. & de Vos, W.M. Metabolic engineering of Lactococcus lactis: influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61, 3967–3971 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferain, T., Schanck, A.N. & Delcour, J. 13C nuclear magnetic resonance analysis of glucose and citrate end products in a ldhL-ldhD double knockout strain of Lactobacillus plantarum. Appl. Environ. Microbiol. 178, 7311–7315 (1996).

    Google Scholar 

  20. Foucaud, C., Herve, M., Neumann, J.M. & Hemme, D. 1995.Glucose metabolism and internal pH of Lactococcus lactis subsp. lactis cells utilizing NMR spectroscopy. Lett. Appl. Microbiol. 21, 10–13 (1995).

    Article  CAS  Google Scholar 

  21. Snoep, J.L., de Mattos, M.J.T., Starrenburg, M.J.C. & Hugenholtz, J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and α-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J. Bacteriol. 174, 4838–4841 (1992).

    Article  CAS  Google Scholar 

  22. Mou, L., Sullivan, J.J. & Jago, G.R. Autolysis of Streptococcus cremoris. J. Dairy Res. 43, 275–282 (1976).

    Article  CAS  Google Scholar 

  23. Vegarud, G., Castberg, H.B. & Langsrud, T. Autolysis of group N streptococci. Effects of media composition modifications and temperature. J. Dairy Sci. 66, 2294–2302 (1983).

    Article  CAS  Google Scholar 

  24. Buist, G. et al. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177, 1554–1563 (1995).

    Article  CAS  Google Scholar 

  25. Wasserman, S.A., Daub, E., Grisafi, P., Botstein, D. & Walsh, C.T. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification and characterization. Biochemistry 23, 5182–5187 (1984).

    Article  CAS  Google Scholar 

  26. Wang, E. & Walsh, C. Suicides subtrates for the alanine racemase of Escherichia coli B. Biochemistry 17, 1313–1321 (1978).

    Article  CAS  Google Scholar 

  27. Lobocka, M., Henning, J., Wild, J. & Klopotowski, T. Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of the d-amino acid dehydrogenase and the catabolic alanine racemase. J. Bacteriol. 176, 1500–1510 (1994).

    Article  CAS  Google Scholar 

  28. Ferrari, E., Henner, D.J. & Yang, M.Y. Isolation of an alanine gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technology 3, 1003–1007 (1985).

    CAS  Google Scholar 

  29. Hols, P. et al. The alanine racemase gene is essential for growth of Lactobacillus plantarum. J. Bacteriol. 179, 3804–3807 (1997).

    Article  CAS  Google Scholar 

  30. Ohta, K., Beall, D.S., Mejia, J.P., Shanmugan, K.T. & Ingram, L.O. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57, 893–900 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohta, T., Ogbonna, J.C., Tanaka, H. & Yajima, M. Development of a fermentation method using immobilized cells under unsterile conditions. 2. Ethanol and l-lactic acid production without heat and filter sterilization. Appl. Microbiol. Biotechnol. 42, 246–250 (1994).

    Article  CAS  Google Scholar 

  32. Casadaban, M.J. & Cohen, S.N. Analysis of gene control signals by DNA fusion cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1989).

    Google Scholar 

  34. Vos, P. et al. A maturation protein essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J. Bacteriol. 171, 2795–2802 (1989).

    Article  CAS  Google Scholar 

  35. Leenhouts, K.J., Kok, J. & Venema, G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 394–400 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wells, J.M., Wilson, P.W. & Le Page, R.W.F. Improved cloning vectors and transformation procedure for Lactococcus lactis. J. Appl. Bacteriol. 74, 629–636 (1993).

    Article  CAS  Google Scholar 

  37. Ferain, T., Garmyn, D., Bernard, N., Hols, P. & Delcour, J. Lactobacillus plantarum ldhL gene: overproduction and deletion. J. Bacteriol. 176, 596–601 (1994).

    Article  CAS  Google Scholar 

  38. Chen, J.-D. & Morisson, D.A. Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for the cloning of DNA from Streptococcus pneumoniae. Gene 64, 155–164 (1988).

    Article  CAS  Google Scholar 

  39. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27, 680–685 (1970).

    Article  Google Scholar 

  40. Starrenburg, M.J.C. & Hugenholtz, J. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl. Environ. Microbiol. 57, 3535–3540 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G.A. Sprenger for providing plasmid pBM20alaD; P. Renault for sequence information on the alr gene from L. lactis IL1403 preceding publication; and R. Holleman, H. Kosters, and M. Starrenburg for their technical help in HPLC analyses and fermentation. This research was carried out in the framework of the Community Research Programme BIOTECH (contract no. BIO4-CT96-0498). P.H. holds a fellowship of the EC BIOTECH programme (contract no. BIO4-CT96-5093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Hols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hols, P., Kleerebezem, M., Schanck, A. et al. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17, 588–592 (1999). https://doi.org/10.1038/9902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing