Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli

Abstract

Human SPARC (secreted protein acidic and rich in cysteine), an extracellular matrix protein containing 14 cysteine residues, was found to partition equally between soluble and insoluble cellular fractions when overexpressed in the Escherichia coli cytoplasm. While the growth temperature and medium pH had little effect on inclusion body formation, co-overproduction of the dnaKJ operon, but not of the groE operon, suppressed aggregation at the expense of intracellular accumulation. Although both forms of the protein were fully reduced in wild-type cells, 70% to 85% of soluble and insoluble SPARC could be converted into oxidized species in a thioredoxin reductase (trxB) null mutant following incubation on ice. Approximately 15% to 20% of SPARC exhibited the electrophoretic mobility of the biologically active protein. Overproduction of the dnaKJ operon in trxB cells decreased the formation of disulfide-bonded SPARC multimers in the aggregated material but not in its soluble counterpart. Our results suggest that the activity responsible for disulfide bond formation in trxB mutants acts at the post-translational level and is able to freely diffuse within inclusion bodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, T.F. and Sage, E.H. 1994. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 8: 163–173.

    Article  CAS  PubMed  Google Scholar 

  2. Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J.N., and Engel, J. 1996. Structure of a novel Ca2+ binding module in BM40/SPARC/osteonectin. Nature Struct. Biol. 3: 67–73.

    Article  CAS  PubMed  Google Scholar 

  3. Funk, S.E. and Sage, E.H. 1993. Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts. J. Cell. Physiol. 154: 53–63.

    Article  CAS  PubMed  Google Scholar 

  4. Bassuk, J.A., Baneyx, F., Vernon, R.B., Funk, S.E., and Sage, E.H. 1996. Expression of biologically active human SPARC in Escherichia coli . Arch. Biochem. Biophys. 325: 8–19.

    Article  CAS  PubMed  Google Scholar 

  5. Bassuk, J.A., Braun, L.P., Motamed, K., Baneyx, F. and Sage, E.H. 1996. Renaturation of secreted protein acidic and rich in cysteine (SPARC) expressed in Escherichia coli requires isomerization of disulfide bonds for recovery of biological activity. Int. J. Biochem. Cell Biol. 28: 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  6. Bardwell, J.C. 1994. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14: 199–205.

    Article  CAS  PubMed  Google Scholar 

  7. Wall, J.G. and Plückthun, A. 1995. Effects of overcsxpressing folding modulators on the in vivo folding of heterotogous proteins in Escherichia coli . Curr. Opin. Biotechnol. 6: 507–516.

    Article  CAS  PubMed  Google Scholar 

  8. Derman, A.I., Prinz, W.A., Belin, D., and Beckwith, J. 1993. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli . Science 262: 1744–1747.

    Article  CAS  PubMed  Google Scholar 

  9. Proba, K., Ge, L., and Plückthun, A. 1995. Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene 159: 203–207.

    Article  CAS  PubMed  Google Scholar 

  10. Derman, A.I. and Beckwith, J. 1995. Escherichia coli alkaline phosphatase localized to the cytoplasm acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fpsion studies. J. Bacteriol. 177: 3764–3770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pottgiesser, J., Maurer, P., Mayer, U., Nischt, R., Mann, K., Timpl, R., et al. 1994. Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J. Mol. Biol. 238: 563–574.

    Article  CAS  PubMed  Google Scholar 

  12. Schein, C.H. 1989. Productori of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1148.

    CAS  Google Scholar 

  13. Strandberg, L. and Enfors, S. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli . Appl. Environ. Microbiol. 57: 1669–1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas, J.G. and Baneyx, F. 1996. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overproducing heat-shock proteins. J. Biol. Chem. 271: 11141–11147.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas, J.G. and Baneyx, F. 1997. The effects of molecular chaperone over-expression and ethanol on inclusion body formation in recombinant Escherichia coli . Biotechnol. Prog., submitted.

  16. Thomas, J.G. and Baneyx, F. 1996. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol. Microbiol. 21: 1185–1196

    Article  CAS  PubMed  Google Scholar 

  17. Rudolph, R. and Lilie, H. 1996. In vitro folding of inclusion body proteins. FASEB J. 10: 49–56.

    Article  CAS  PubMed  Google Scholar 

  18. Ostermeier, M., De Sutter, K., and Georgiou, G. 1996. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yields of a heterologous Secreted protein with disulfide bonds. J. Biol. Chem. 271: 10616-10622.

    Article  CAS  PubMed  Google Scholar 

  19. Blum, P., Velligan, M., Lin, N., and Matin, A. 1992. DnaK-mediated alterations in human growth hormone protein inclusion bodies. Bio/Technology 10: 301–304.

    CAS  Google Scholar 

  20. Goloubinoff, P., Gatenby, A.A., and Lorimer, G.H. 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli . Nature 337: 44–47.

    Article  CAS  PubMed  Google Scholar 

  21. Russel, M. and Model, P. 1986. The role of thioredoxin reductase in filamentous phage assembly: construction, isolation and characterization of mutant thiore-doxins. J. Biol. Chem. 261: 14997–15005.

    CAS  PubMed  Google Scholar 

  22. Lane, T.F. and Sage, E.H. 1990. Functional mapping of SPARC: peptides from two distinct Ca2+-binding sites modulate cell shape. J. Cell Biol. 111: 3065–3076.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, E., Thomas, J., Bassuk, J. et al. Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat Biotechnol 15, 581–585 (1997). https://doi.org/10.1038/nbt0697-581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0697-581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing