Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Fiber-optic Sensor for Continuous Monitoring of Fermentation pH

Abstract

We have developed a fiber-optic chemical sensor for on-line monitoring of fermentation pH. The sensor is based on a covalently bound fluorescent dye immobilized within a water-permeable polymer layer on an optical fiber. Measurements were performed on a portable fluorimeter and employed a ratiometric approach to account for system instabilities. We show that the use of this fiber-optic sensor provides fast, accurate and reliable measurements during E. coli fermentation in a complex medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnold, M.A. 1992. Fiber-optic chemical sensors. Analyt. Chem. 64: 1015–1025.

    Google Scholar 

  2. Wolfbeis, O.S. 1990, Chemical sensors-survey and trends. Fresenius J. Analyt. Chem. 337: 522–527.

    Article  CAS  Google Scholar 

  3. Camara, C., Moreno, M.C. and Orellana, G. 1991. title of paper?, p. 37–40. In: Biosensors with Fiberoptics. Wise, D. L. and Wingard, L. B. (Eds.). Humana Press, Clifton, NJ.

    Google Scholar 

  4. Saari, L.A. and Seitz, W.R. 1982. pH sensor based on immobilized fluorescein amine. Anal. Chem. 54: 821–823.

    Article  CAS  Google Scholar 

  5. Munkholm, C., Walt, D.R., Milanovich, F.P. and Klainer, S.M., 1986. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurements. Analyt. Chem. 58: 1427–1430.

    Article  CAS  Google Scholar 

  6. Barnard, S. and Walt, D.R. 1991. title? Nature 353: 338–340.

    Article  Google Scholar 

  7. Tan, W., Shi,Z.-Y., Smith, S., Bimbaum, D. and Kopelman, R. 1992. Submicrometer intracellular chemical optical fiber sensor. Science 258: 778–781.

    Article  CAS  Google Scholar 

  8. Posch, H.E., Leiner, M.J.P. and Wolfbeis, O.S. 1989. Towards a gastric pH sensor: an optrode for the 0–7 pH range. Fresenius Z. Anal.Chem. 334: 162–165.

    Article  CAS  Google Scholar 

  9. Wolfbeis, O.S. 1990. Fiber-optic sensors in bioprocess control, p. xxx–xxx? In: Sensors in Bioprocess Control. Twork, J. V., and Yacynych, A. M (Eds.). Publisher. Place of Pub?

    Google Scholar 

  10. Li, J.-K., Asali, E.C., Humphrey, A.E. and Horvath, J.J. 1991. Monitoring cell concentration and activity by multiple excitation fluorometry. Biotechnol. Progress 7: 21–27.

    Article  CAS  Google Scholar 

  11. Li, J.-K., and Humphrey, A.E., 1991. Use of fluorometry for monitoring and control of a bioreactor. Biotechnol. Bioeng. 37: 1043–1049.

    Article  CAS  Google Scholar 

  12. Coppella, S.J. and Rao, G. 1990. Practical considerations in the measurement of culture fluorescence. Biotechnol. Prog. 6: 398–401.

    Article  CAS  Google Scholar 

  13. Scheper, T., Lorenz, T., Schmidt, W. and Schugerl, K. 1986. Measurement of culture fluorescence during the cultivation of Penicillium chrysogenum and Zymomonas mobilis. J. Biotechnol. 3: 231–238.

    Article  CAS  Google Scholar 

  14. Hancher, C.W., Thacker, L.H. and Phares, E.F., 1978. A fiber-optic retroreflective turbidimeter for continuously monitoring cell concentration during fermentation. Bioteehnol. Bioeng. 16: 475–484.

    Article  Google Scholar 

  15. Kennedy, M.J., Thakur, M.S., Wang, D.I.C. and Stephanopoulos, G. 1992. Estimating cell concentration in the presence of suspended solids: A light scatter technique. Biotechnol. Bioeng. 40: 875–888.

    Article  CAS  Google Scholar 

  16. Junker, B.H., Wang, D.I.C. and Hatton, T.A. 1988. Fluorescence sensing of fermentation parameters using fiber optics. Biotechnol. Bioeng. 32: 55–63.

    Article  CAS  Google Scholar 

  17. Kisaalita, W.S., Sininger, P.J., Bothas, R.J., McCarthy, J.F. and Magin, R.L. 1991. Application of fiber-optic fluorescence measurements to on-line pH monitoring of a Pseudomonad fermentation process. Biotechnol. Progress. 7: 564–569.

    Article  CAS  Google Scholar 

  18. Kroneis, H.W. and Marsoner, H.J. 1983. A fluorescence-based sterilizable oxygen probe for use in bioreactors. Sensors and Actuators 4: 587–592.

    Article  CAS  Google Scholar 

  19. Weigl, B.H., Holobar, A., Kraus, H., Gouber, W., Wollschlager, A. and Wolfbeis, O.S. 1993. Optical triple sensor for measuring pH, oxygen and carbon dioxide in bioreactors. Proc. SPIE. In press.

    Google Scholar 

  20. Zhang, Z. and Seitz, W.R. 1984. A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Analyt. Chim. Acta. 160: 47–55.

    Article  CAS  Google Scholar 

  21. Munkholm, C., 1989. Tufts University. PhD thesis.

    Google Scholar 

  22. Martin, M.M. and Lindquist, L. 1975. The pH dependence of fluorescein fluorescence. J. Luminescence 10: 381–390.

    Article  CAS  Google Scholar 

  23. Munkholm, C., Parkinson, D.-R. and Walt, D.R. 1990. Intramolecular fluorescence self-quenching of fluoresceinamine. JACS 112: 2608–2612.

    Article  CAS  Google Scholar 

  24. Taylor, F.R. and Cronan, J.E. Jr. 1979. Cyclopropane fatty acid synthase of E. coli. Stabilization, punfication, and interaction with phospholipid vesicles. Biochemistry 18: 3292–3300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agayn, V., Walt, D. Fiber-optic Sensor for Continuous Monitoring of Fermentation pH. Nat Biotechnol 11, 726–729 (1993). https://doi.org/10.1038/nbt0693-726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0693-726

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing