Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression

Abstract

Human postnatal bone marrow stromal stem cells (BMSSCs) have a limited life-span and progressively lose their stem cell properties during ex vivo expansion. Here we report that ectopic expression of human telomerase reverse transcriptase (hTERT) in BMSSCs extended their life-span and maintained their osteogenic potential. In xenogenic transplants, hTERT-expressing BMSSCs (BMSSC-Ts) generated more bone tissue, with a mineralized lamellar bone structure and associated marrow, than did control BMSSCs. The enhanced bone-forming ability of BMSSC-Ts was correlated with a higher and sustained expression of the early pre-osteogenic stem cell marker STRO-1, indicating that telomerase expression helped to maintain the osteogenic stem cell pool during ex vivo expansion. These results show that telomerase expression can overcome critical technical barriers to the ex vivo expansion of BMSSCs, and suggest that telomerase therapy may be a useful strategy for bone regeneration and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic expression of hTERT induces telomerase activity in BMSSCs.
Figure 2: Telomerase expression enhances osteoblast differentiation in vitro.
Figure 3: Histological characterization of regenerated bone by transplantation of BMSSC-Ts at PD20 and BMSSC-Cs at PD20 in vivo.
Figure 4: Telomerase expression extends bone-forming capacity of BMSSCs in vivo.
Figure 5: Telomerase expression enhances and maintains STRO-1 expression in BMSSCs.

Similar content being viewed by others

References

  1. Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52, 661–667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Broccoli, D., Young, J.W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. USA 92, 9082–9086 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W. & Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cell. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S., Lumelsky, N., Studer, L., Auerbach J.M., & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Keyoung, H.M. et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, M., Yang, L. & Hornsby, P.J. Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat. Biotechnol. 18, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, J. et al. Telomerized human microvasculature is functional in vivo. Nat. Biotechnol. 19, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Rodan, G.A. & Martin, T.J. Therapeutic approaches to bone diseases. Science 289, 1508–1515 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Roholl, P.J., Blauw, E., Zurcher, C., Dormans, J.A. & Theuns, H.M. Evidence for a diminished maturation of preosteoblasts into osteoblasts during aging in rats: an ultrastructural analysis. J. Bone Miner. Res. 9, 355–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Inoue, K. et al. The effect of aging on bone formation in porous hydroxyapatite: biochemical and histological analysis. J. Bone Miner. Res. 12, 989–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Bergman, R.J. et al. Age-related changes in osteogenic stem cells in mice. J. Bone Miner. Res. 11, 568–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Rudolph, K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Yudoh, K., Matsuno, H., Nakazawa, F., Katayama, R. & Kimura, T. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res. 16, 1453–1464 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Caplan, A.I. & Bruder, S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7, 259–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Krebsbach, P.H. et al. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059–1069 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bianco, P., Riminucci, M., Gronthos, S. & Robey, P.G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Reddi, A.H. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 6, 351–359 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gronthos, S. et al. Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res. 14, 47–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gimble, J.M. et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem. 58, 393–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97, 13625–13630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stewart, K. et al. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J. Bone Miner. Res. 14, 1345–1356 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Saito, N. et al. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 19, 332–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kon, E. et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49, 328–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Petite, H. et al. Tissue-engineered bone regeneration. Nat. Biotechnol. 18, 959–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Nishida, S. et al. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone Miner. Metab. 17, 171–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Mueller, S.M. & Glowacki, J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell. Biochem. 82, 583–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Muschler, G.F., Nitto, H., Boehm, C.A. & Easley, K.A. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J. Orth. Res. 19, 117–125 (2001).

    Article  CAS  Google Scholar 

  43. Hackett, J.A., Feldser, D.M. & Greider, C.W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Morales, C.P. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Rudolph, K.L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253–1258 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Wyllie, F.S. et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24, 16–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kuznetsov, S.A. et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Weinberg for providing plasmids. This work was supported by research grants from the National Institutes of Health (National Institute of Dental and Craniofacial Research) to C.-Y. Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Yu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Gronthos, S., Chen, S. et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20, 587–591 (2002). https://doi.org/10.1038/nbt0602-587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0602-587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing