Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS)

Abstract

Periplasmic expression with cytometric screening (PECS) is a powerful and rapid “display-less” technology for isolating ligand-binding proteins from diverse libraries. Escherichia coli expressing a library of proteins secreted into the periplasmic space are incubated with a fluorescent conjugate of the target ligand. Under the proper conditions, ligands as large as about 10 kDa can equilibrate within the periplasmic space without compromising the cell's integrity or viability. The bacterial cell envelope effectively serves as a dialysis bag to selectively retain receptor–fluorescent probe complexes but not free ligand. Cells displaying increased fluorescence are then isolated by flow cytometry. We demonstrate that scFv antibodies with both very high and low affinity to digoxigenin can be isolated from libraries screened by PECS using a benchtop flow cytometer. We also show that preexisting libraries constructed for display on filamentous bacteriophage can be screened by PECS without the need for subcloning. In fact, PECS was found to select for proteins that could be missed by conventional phage panning and screening methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram showing the principle of periplasmic expression with cytometric screening (PECS).
Figure 2: Optimization of the periplasmic expression screening signal.
Figure 3: Examples of targets visualized by PECS.
Figure 4: Monitoring the phage panning process using FACS via PECS.
Figure 5: Examining clones isolated by phage display and PECS.

Similar content being viewed by others

References

  1. Shusta, E.V., VanAntwerp, J. & Wittrup, K.D. Biosynthetic polypeptide libraries. Curr. Opin. Biotechnol. 10, 117–122 (1999).

    Article  CAS  Google Scholar 

  2. Rodi, D.J. & Makowski, L. Phage display technology—finding a needle in a vast molecular haystack. Curr. Opin. Biotechnol. 10, 87–93 (1999).

    Article  CAS  Google Scholar 

  3. Boder, E.T. & Wittrup, K.D. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol. 328, 430–444 (2000).

    Article  CAS  Google Scholar 

  4. Daugherty, P.S., Iverson, B.L. & Georgiou, G. Flow cytometric screening of cell-based libraries. J. Immunol. Methods 243, 211–227 (2000).

    Article  CAS  Google Scholar 

  5. Olsen, M.J. et al. Function-based isolation of novel enzymes from a large library. Nat. Biotechnol. 18, 1071–1074 (2000).

    Article  CAS  Google Scholar 

  6. Maenaka, K. et al. A stable phage-display system using a phagemid vector: phage display of hen egg-white lysozyme (HEL), Escherichia coli alkaline, phosphatase, and anti-HEL monoclonal antibody, HyHEL10. Biochem. Biophys. Res. Commun. 218, 682–687 (1996).

    Article  CAS  Google Scholar 

  7. Corey, D.R., Shiau, A.K., Yang, Q., Janowski, B.A. & Craik, C.S. Trypsin display on the surface of bacteriophage. Gene 128, 129–134 (1993).

    Article  CAS  Google Scholar 

  8. Weiner, J.H. et al. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93, 93–101 (1998).

    Article  CAS  Google Scholar 

  9. Deng, S.J. et al. Basis for selection of improved carbohydrate-binding single-chain antibodies from synthetic gene libraries. Proc. Natl. Acad. Sci. USA 92, 4992–4996 (1995).

    Article  CAS  Google Scholar 

  10. MacKenzie, C.R. et al. Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J. Biol. Chem. 271, 1527–1533 (1996).

    Article  CAS  Google Scholar 

  11. MacKenzie, R. & To, R. The role of valency in the selection of anti-carbohydrate single-chain Fvs from phage display libraries. J. Immunol. Methods 220, 39–49 (1998).

    Article  CAS  Google Scholar 

  12. Decad, G.M. & Nikaido, H. Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J. Bacteriol. 128, 325–336 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, G., Dubrawsky, I., Mendez, P., Georgiou, G. & Iverson, B.L. In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site. Protein Eng. 12, 349–356 (1999).

    Article  CAS  Google Scholar 

  14. Schildbach, J.F. et al. Heavy chain position 50 is a determinant of affinity and specificity for the anti-digoxin antibody 26-10. J. Biol. Chem. 268, 21739–21747 (1993).

    CAS  PubMed  Google Scholar 

  15. Short, M.K., Jeffrey, P.D., Kwong, R.F. & Margolies, M.N. Contribution of antibody heavy chain CDR1 to digoxin binding analyzed by random mutagenesis of phage-displayed Fab 26-10. J. Biol. Chem. 270, 28541–28550 (1995).

    Article  CAS  Google Scholar 

  16. Daugherty, P.S., Chen, G., Olsen, M.J., Iverson, B.L. & Georgiou, G. Antibody affinity maturation using bacterial surface display. Protein Eng. 11, 825–832 (1998).

    Article  CAS  Google Scholar 

  17. Jeffrey, P.D. et al. 26-10 Fab–digoxin complex: affinity and specificity due to surface complementarity. Proc. Natl. Acad. Sci. USA 90, 10310–10314 (1993).

    Article  CAS  Google Scholar 

  18. Boder, E.T. & Wittrup, K.D. Optimal screening of surface-displayed polypeptide libraries. Biotechnol. Prog. 14, 55–62 (1998).

    Article  CAS  Google Scholar 

  19. Gough, K.C. et al. Selection of phage antibodies to surface epitopes of Phytophthora infestans. J. Immunol. Methods 228, 97–108 (1999).

    Article  CAS  Google Scholar 

  20. Martinez, M.B., Flickinger, M.C. & Nelsestuen, G.L. Steady-state enzyme kinetics in the Escherichia coli periplasm: a model of a whole cell biocatalyst. J. Biotechnol. 71, 59–66 (1999).

    Article  CAS  Google Scholar 

  21. Homma, T. & Nakae, T. Effects of cations on the outer membrane permeability of Escherichia coli. Tokai J. Exp. Clin. Med. 7, 171–175 (1982).

    CAS  PubMed  Google Scholar 

  22. Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56, 395–411 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Boeke, J.D., Model, P. & Zinder, N.D. Effects of bacteriophage f1 gene III protein on the host cell membrane. Mol. Gen. Genet. 186, 185–192 (1982).

    Article  CAS  Google Scholar 

  24. Krebber, A. et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods. 201, 35–55 (1997).

    Article  CAS  Google Scholar 

  25. Marciano, D.K., Russel, M. & Simon, S.M. An aqueous channel for filamentous phage export. Science 284, 1516–1519. (1999).

    Article  CAS  Google Scholar 

  26. Brissette, J.L., Russel, M., Weiner, L. & Model, P. Phage shock protein, a stress protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 862–866. (1990).

    Article  CAS  Google Scholar 

  27. Hayhurst, A. & Harris, W.J. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).

    Article  CAS  Google Scholar 

  28. Rakonjac, J. & Model, P. Roles of pIII in filamentous phage assembly. J. Mol. Biol. 282, 25–41 (1998).

    Article  CAS  Google Scholar 

  29. Rakonjac, J., Feng, J. & Model, P. Filamentous phage are released from the bacterial membrane by a two- step mechanism involving a short C-terminal fragment of pIII. J. Mol. Biol. 289, 1253–1265 (1999).

    Article  CAS  Google Scholar 

  30. Georgiou, G. Analysis of large libraries of protein mutants using flow cytometry. Adv. Protein Chem. 55, 293–315 (2000).

    Article  CAS  Google Scholar 

  31. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H. & Quake, S.R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999).

    Article  CAS  Google Scholar 

  32. Daugherty, P.S., Olsen, M.J., Iverson, B.L. & Georgiou, G. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. 12, 613–621 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Greg Winter laboratory, Medical Research Council, UK for the Griffin.1 library, Charles H. Patterson Jr. Center for Bio/Molecular Science and Engineering, Naval Research Laboratory (Washington, DC) for the Cy5-TNB probe, and the Jon Beckwith laboratory for strains. We thank Patrick S. Daugherty for critical reading of the manuscript and members of the Georgiou and Iverson laboratories for help and comment. This work was supported by Defense Advanced Research Projects Agency (DARPA). B.R.H. was supported by a US Army Multidisciplinary Research Program of the University Research Initiative (MURI) grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brent L. Iverson or George Georgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Hayhurst, A., Thomas, J. et al. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat Biotechnol 19, 537–542 (2001). https://doi.org/10.1038/89281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing