Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selective production of transgenic mice using green fluorescent protein as a marker

Abstract

The low efficiency of transgenic animal production by microinjection has been a serious problem especially for the production of transgenic livestock. We developed a method to selectively produce transgenic mice using green fluorescent protein (GFP) as a marker. Using this method, we obtained eight fetuses and four live-born mice derived from 55 GFP-positive blastocysts. PCR analysis showed 11 out of 12 mice (fetuses and newborn mice) were transgenic. Southern blot analysis showed that 8 out of 12 were transgenic. GFP expression was also observed in bovine blastocysts, suggesting that this method should contribute to the efficient production of transgenic livestock.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K., and Palmiter, R.D. 1985. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA 82: 4438–4442.

    Article  CAS  Google Scholar 

  2. Hammer, R.E., Pursel, V.G., Rexroad, C.E. Jr., Wall, R.J., Bolt, D.J., Ebert, K.M. et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 80–683.

    Google Scholar 

  3. Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., and Tsien, R.Y. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20: 448–455.

    Article  CAS  Google Scholar 

  4. Thompson, E.M., Adenot, P., Tsuji, F.I., and Renard, J.-P. 1995. Real time imaging of transcriptional activity in live mouse preimplantation embryos using a secreted luciferase. Proc. Natl. Acad. Sci. USA 92: 1317–1321.

    Article  CAS  Google Scholar 

  5. Ikawa, M., Kominami, K., Yoshimura Y., Tanaka, K., Nishimune, Y., and Okabe, M. 1995. A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett. 375: 125–128.

    Article  CAS  Google Scholar 

  6. Hanaoka, K., Hayasaka, M., Uetsuki, T., Fujisawa-Sehara, A., and Nabeshima, Y. 1991. A stable cellular marker for the analysis of mouse chimeras: the bacterial chloramphenicol acetyltransferase gene driven by the human elongation factor 1 a promoter. Differentiation 48: 183–189.

    Article  CAS  Google Scholar 

  7. Oshima, M., Oshima, H., Kobayashi, M., Tsutsumi, M., and Taketo, M.M. 1995. Evidence against dominant negative mechanisms of intestinal polyp formation by Ape gene mutations. Cancer Res. 55: 2719–2722.

    CAS  PubMed  Google Scholar 

  8. Niwa, H., Yamamura, K., and Miyazaki, J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–200.

    Article  CAS  Google Scholar 

  9. Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y., and Okabe, M. 1995. Green fluorescent protein as a marker in transgenic mice. Develop. Growth Differ. 37: 455–459.

    Article  CAS  Google Scholar 

  10. King, D. and Wall, R.J. 1988. Identification of specific gene sequences in preimplantation embryos by genomic amplification: detection of a transgene. Mol. Reprod. Develop. 1: 57–62.

    Article  CAS  Google Scholar 

  11. Ninomiya T., Hoshi, M., Mizuno, A., Nagao, M., and Yuki, A 1989. Selection of mouse preimplantation embryos carrying exogenous DNA by polymerase chain reaction. Mol. Reprod. Develop. 1: 242–248.

    Article  CAS  Google Scholar 

  12. Heim, R., Cubitt, A.B., and Tsien, R.Y. 1995. Improved green fluorescence. Nature 373: 663–664.

    Article  CAS  Google Scholar 

  13. Kim, D.W., Uetsuki T., Kaziro, Y., Yamaguchi, N., and Sugano, S. 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91: 217–223.

    Article  CAS  Google Scholar 

  14. Uetsuki, T., Naito, A., Nagata, S., and Kaziro, Y. 1989. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor 1α. J. Biol. Chem. 264: 5791–5798

    CAS  PubMed  Google Scholar 

  15. Hogan, B., Beddington, R., Costaniti, F., and Lacy, E. 1994. pp. 232–248 in Manipulating the mouse embryo: a laboratory manual. 2nd ed. Hogan, B., Beddington, R., Costaniti, F, and Lacy, E. (eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  16. Brackett, B.G. and Oliphant, G. 1975. Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12: 260–274.

    Article  CAS  Google Scholar 

  17. Takahashi, Y. and First, N.L. 1992. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37: 963–978.

    Article  CAS  Google Scholar 

  18. Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuyuki Takada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, T., lida, K., Awaji, T. et al. Selective production of transgenic mice using green fluorescent protein as a marker. Nat Biotechnol 15, 458–461 (1997). https://doi.org/10.1038/nbt0597-458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing