Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Chimeric proteins can exceed the sum of their parts: Implications for evolution and protein design

Abstract

Chimeric analogs derived from pairs of homologous proteins routinely exhibit activities found in one or both parents. We describe chimeras of two glycoprotein hormones, human chorionic gonadotropin (hCG) and human follitropin (hFSH), that exhibit activity unique to a third family member, human thy-rotropin (hTSH). The results show that biological activity can be separated from hormone-specific amino acid residues. This is consistent with a model for the evolution of homologous ligand–receptor pairs involving gene duplication and the creation of inhibitory determinants that restrict binding. Disruption of these determinants can unmask activities characteristic of other members of a protein family. Combining portions of two ligands to create analogs with properties of a third family member can facilitate identifying key determinants of protein–protein interaction and may be a useful strategy for creating novel therapeutics. In the case of the glycoprotein hormones, this showed that two different hormone regions (i.e., the seat-belt and the intersubunit groove) appear to limit inappropriate contacts with receptors for other members of this family. These observations also have important caveats for chimera-based protein design because an unexpected gain of function may limit the therapeutic usefulness of some chimeras.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pierce, J.G. and Parsons, T.F. . 1981. Glycoprotein hormones: structure and function.Ann. Rev. Biochem. 50: 465–495.

    Article  CAS  Google Scholar 

  2. McFarland, K.C., Sprengel, R., Phillips, H.S., Kohler, M., Rosemblit, N., Nikolics, K. et al. 1989. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. cience 245: 494–499.

    CAS  Google Scholar 

  3. Sprengel, R., Braun, T., Nikolics, K., Segaloff, D.L. and Seeburg, P.M. . 1990. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol. Endocrinol. 4: 525–530.

    Article  CAS  Google Scholar 

  4. Nagayama, Y., Kaufman, K.D., Seto, P. and Rapoport, B. 1989. Molecular cloning sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem. Biophys. Res. Commun. 165: 1184–1190.

    Article  CAS  Google Scholar 

  5. Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J. et al. 1994. Crystal structure of human chorionic gonado-tropin. Nature 369: 455–461.

    Article  CAS  Google Scholar 

  6. Wu, H., Lustbader, J.W., Liu, Y., Canfield, R.E. and Hendrickson, W.A. . 1994. Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2: 545–558.

    Article  CAS  Google Scholar 

  7. Cheng, K.W., Glazer, A.M. and Pierce, J.G. . 1973. The effects of modification of the COOH-terminal regions of bovine thyrotropin and its subunits. J. Biol. Chem. 248: 7930–7937.

    CAS  PubMed  Google Scholar 

  8. Merz, W.E. and Dorner, M. .1985. Studies on structure-function relationships of human choriogonadotropins with C-terminally shortened α-sub-units I. Receptor binding and immunologic properties. Biochim. Biophys. Acta. 844 62–66.

    Article  CAS  Google Scholar 

  9. Matzuk, M.M., Keene, J.L. and Boime, I. .1989. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J. Biol. Chem. 264: 2409–2414.

    CAS  Google Scholar 

  10. Ward, D.N. and Moore, W.T. . 1979. pp. 151–164 in Animal models for research on contraception and fertility. Alexander, N.J. (ed). Harper and Row, New York.

    Google Scholar 

  11. Campbell, R.K., Dean Emig, D.M. and Moyle, W.R. . 1991. Conversion of human choriogonadotropin into a follitropin by protein engineering. Proc. Natl. Acad. Sci. USA 88: 760–764.

    Article  CAS  Google Scholar 

  12. Moyle, W.R., Campbell, R.K., Myers, R.V., Bernard, M.P., .1994. Co-evolution of ligand-receptor pairs. Nature 368: 251–255.

    Article  CAS  Google Scholar 

  13. Dias, J.A., Zhang Y, and Liu, X. 1994. Receptor binding and functional properties of chimeric human follitropin prepared by an exchange between a small hydrophilic intercysteine loop of human follitropin and human lutropin. J. Biol. Chem. 269: 25289–25294.

    CAS  PubMed  Google Scholar 

  14. Tomer Y, Huber, G.K., and Davies, T.F. 1992. Human chorionic gonadotropin (hCG) interacts directly with recombinant human TSH receptors. J. Clin. Endocrinol. Metab. 74: 1477–1479.

    CAS  PubMed  Google Scholar 

  15. Yoshimura, M., Pekary, A.E., Pang, X.P., Berg, L., Cole, L.A., Kardana, A. and Hershman, J.M. . 1994. Effect of peptide nicking in the human chorionic gonadotropin beta-subunit on stimulation of recombinant human thyroid-stimulating hormone receptors. European J. Endocrinol. 13092–96.

    Article  Google Scholar 

  16. Hoermann, R., Keutmann, H.T. and Amir, S.M. 1991. Carbohydrate modifications transform human chorionic gonadotropin into a potent stimulator of adenosine 3′,5′-monophosphate and growth responses in FRTL-5 thyroid cells. Endocrinology 128: 1129–1135.

    Article  CAS  Google Scholar 

  17. Carayon, P., Amr, S., Nisula, B. and Lissitzky, S. .1981. Effect of car-boxypeptidase digestion of the human choriogonadotropin molecule on its thyrotropic activity. Endocrinology 108: 1891–1898.

    Article  CAS  Google Scholar 

  18. Yoshimura, M., Nishikawa, M., Yoshikawa, N., Horimoto, M., Toyoda, N., Sawaragi, I. and Inada, M. .1991. Mechanism of thyroid stimulation by human chorionic gonadotropin in sera of normal pregnant women. Acta. Endocrinol. (Copenh). 124: 173–178.

    Article  CAS  Google Scholar 

  19. Yoshikawa, N., Nishikawa, M., Horimoto, M., Yoshimura, M., Toyoda, N. and Inada, M. .1990. Human chorionic gonadotropin promotes thyroid growth via thyrotropin receptors in FRTL-5 cells. Endocrinol. Jpn. 37: 639–648.

    Article  CAS  Google Scholar 

  20. Pekary, A.E., Jackson, I.M., Goodwin, T.M., Pang, X.P., Hein, M.D. and Hershman, J.M. . 1993. Increased in vitro thyrotropic activity of partially sialated human chorionic gonadotropin extracted from hydatidiform moles of patients with hyperthyroidism. J. Clin. Endocrinol. Metab. 7670–74.

    CAS  Google Scholar 

  21. Glinoer, D., De Nayer, P., Robyn, C., Lejeune, B., Kinthaert, J. and Meuris, S. .1993. Serum levels of intact human chorionic gonadotropin (HCG) and its free a and B subunits, in relation to maternal thyroid stimulation during normal pregnancy. J. Endocrinol. Invest. 16: 881–888.

    Article  CAS  Google Scholar 

  22. Tsuruta, E., Tada, H., Tamaki, H., Kashiwai, T., Asahi, K., Takeoka, K. et al. 1995. Pathogenic role of asialo human chorionic gonadotropin in gestational thyrotoxicosis. J. Clin. Endocrinol. Metab. 80: 350–355.

    CAS  PubMed  Google Scholar 

  23. Yamazaki, K., Sato, K., Shizume, K., Kanaji, Y., Ito Y, Obara, T., et al.1995. Potent thyrotropic activity of human chorionic gonadotropin variants in terms of 125I incorporation and de novo synthesized thyroid hormone release in human thyroid follicles. J. Clin. Endocrinol. Metab. 80: 473–479.

    CAS  PubMed  Google Scholar 

  24. Han Y, Bernard, M.P., and Moyle, W.R . 1996. hCG- Residues 94-96 alter LH activity without appearing to make key receptor contacts. Mol. Cell. Endocrinol. 124: 151–161.

    Article  CAS  Google Scholar 

  25. Moyle, W.R., Matzuk, M.M., Campbell, R.K., Cogliani, E., Dean Emig, D.M., Krichevsky, A. et al. 1990. Localization of residues that confer antibody binding specificity using human chorionic gonadotropin/luteinizing hormone beta subunit chimeras and mutants. J. Biol. Chem. 265: 8511–8518.

    CAS  PubMed  Google Scholar 

  26. Cosowsky, L., Rao, S.N.V., Macdonald, G.J., Papkoff, H., Campbell, R.K. and Moyle, W.R. . 1995. The groove between the α- and β-subunits of hormones with lutropin (LH) activity appears to contact the LH receptor and its conformation is changed during hormone binding. J. Biol. Chem. 270: 20011–20019.

    Article  CAS  Google Scholar 

  27. Moyle, W.R., Campbell, R.K., Rao, S.N.V., Ayad, N.G., Bernard, M.P., Han Y, and Wang, Y . 1995. Model of human chorionic gonadotropin (hCG) and lutropin receptor (LHR) interaction that explains signal transduction of the glycoprotein hormones. J. Biol. Chem. 270: 20020–20031.

    Article  CAS  Google Scholar 

  28. Strickland, T.W. and Puett, D. .1981. Contribution of subunits to the function of luteinizing hormone/human chorionic gonadotropin recombinants. Endocrinology 109: 1933–1942.

    Article  CAS  Google Scholar 

  29. El Deiry, S., Chen, T.M. and Puett, D. .1991. Comparison of steroidogenic potencies of homologous and heterologous gonadotropins in rat and mouse Leydig cells. Mol. Cell. Endocrinol. 76: 105–113.

    Article  CAS  Google Scholar 

  30. Yeas, M. .1974. On earlier states of the biochemical system.J. Theor. Biol. 44: 145–160.

    Article  Google Scholar 

  31. Lewis, P.E. . 1951. Pseudoallelism and gene evolution.Cold Spring Harbor Symp. Quant. Biol. 16: 159–174.

    Article  CAS  Google Scholar 

  32. Jensen, R.A. . 1976. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30: 409–425.

    Article  CAS  Google Scholar 

  33. Ohno, S. .1970. pp. 59–65 in Evolution by gene duplication. Springer-Verlag, New York.

    Google Scholar 

  34. Combarnous, Y. and Hengé, M.-H. . 1981. Equine follicle-stimulating hormone: purification, acid dissociation, and binding to equine testicular tissue. J. Biol. Chem. 256: 9567–9572.

    CAS  PubMed  Google Scholar 

  35. Tian Y, Wu, L.-H., Oxender, D.L., and Chung, F.-Z. 1996. The unpredicted high affinities of a large number of naturally occurring tachykinins for chimeric NK1/NK3 receptors suggest a role for an inhibitory domain in determining receptor specificity. J. Biol. Chem. 271: 20250–20257.

    Article  CAS  Google Scholar 

  36. Marengere, L.E.M., Songyang, Z., Gish, G.D., Schaller, M.D., Parsons, J.T., Stern, M.J. et al. 1994. SH2 domain specificity and activity modified by a single residue. Nature 369: 50.

    Article  CAS  Google Scholar 

  37. Souza, S.C., Frick, G.P., Wang, X., Kopchick, J.J., Lobo, R.B. and Goodman, H.M. . 1995. A single arginine residue determines species specificity of the human growth hormone receptor. Proc. Natl. Acad. Sci. USA 92: 959–963.

    Article  CAS  Google Scholar 

  38. van de Poll, M.L.M., Lenferink, A.E.G., van Vugt, M.J.H., Jacobs, J.L.J., Hanssen, J.W.H., Joldersma, M., and van Zoelen, E.J.J. 1995. A single amino acid exchange, Arg-45 to Ala, generates an epidermal growth factor (EGF) mutant with high affinity for the chicken EGF receptor. J. Biol. Chem. 270: 22337–22343.

    Article  CAS  Google Scholar 

  39. Lee, C.-H., Leung, B., Lemmon, M.A., Zheng, J., Cowburn, D., Kuriyan, J. and Saksela, K. .1996. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-Nef protein.EMBO J. 14: 5006–5015.

    Article  Google Scholar 

  40. Turner, P.R., Bambino, T. and Nissenson, R.A. . 1996. A putative selectivity filter in the G-protein-coupled receptors for parathyroid hormone and secretin. J. Biol. Chem. 271: 9205–9208.

    Article  CAS  Google Scholar 

  41. Cole, E.S., Lee, K., Lauziere, K., Kelton, C.A., Chappel, S.C., Weintraub, B.D. et al. 1993. Recombinant human thyroid stimulating hormone: development of a biotechnology product for detection of metastatic lesions of thyroid carcinoma. Bio/Technology 11: 1015–1024.

    Google Scholar 

  42. Pavlakis, G.N., Felber, B.K., Wright, C.M., Papamatheakis, J. and Tse, T. .1987. pp. 29–38 in Gene transfer vectors for mammalian cells. Miller, J.H. and Calos, M.P. (eds). Cold Spring Harbor Press, New York.

    Google Scholar 

  43. Wang Y, Han, Y, Myers, R.V., Macdonald, G.J., and Moyle, W.R. 1994. pp. 191–196 in Ovulation induction: basic science and clinical advances. Filicori, M. and Flamigni, C. (eds). Excerpta. Medica. Int′l. Congr. Series 1046, Elsevier Science B.V., Amsterdam.

    Google Scholar 

  44. Moyle, W.R., Ehrlich, P.H. and Canfield, R.E. . 1982. Use of monoclonal antibodies to hCG subunits to examine the orientation of hCG in the hormone-receptor complex. Proc. Natl. Acad. Sci. USA 79: 2245–2249.

    Article  CAS  Google Scholar 

  45. Morris, J.C., Jiang, N.S., Charlesworth, M.C., McCormick, D.J. and Ryan, R.J. . 1988. The effects of synthetic alpha-subunit peptides on thyrotropin interaction with its receptor.Endocrinology 123: 456–462.

    Article  CAS  Google Scholar 

  46. Morris, J.C., McCormick, D.J. and Ryan, R.J. . 1990. Inhibition of thyrotropin binding to receptor by synthetic human thyrotropin beta peptides. J. Biol. Chem. 265: 1881–1884.

    CAS  PubMed  Google Scholar 

  47. Vitti, P., Elisie, R., Tonacchera, M., Chiovato, L., Mancusi, F., et al.1993. Detection of thyroid-stimulating antibody using Chinese hamster ovary cells transfected with cloned human thyrotropin receptor. J. Clin. Endocrinol. Metab. 76: 499–503.

    CAS  PubMed  Google Scholar 

  48. Vitti, P., Rotella, C.M., Valente, W.A., Cohen, J., Aloj, S.M., Laccetti, P. et al. 1983. Characterization of the optimal stimulatory effects of Graves' monoclonal and serum immunoglobulin G on adenosine 3′,5′-monophosphate production in FRTL-5 thyroid cells: a potential clinical assay. J. Clin. Endocrinol. Metab. 57: 782–791.

    Article  CAS  Google Scholar 

  49. Brooker, J., Harper, J.F., Terasaki, W.L. and Moylan, R.D. . 1979. Radio-immunoassay of cyclic AMP and cyclic GMP. Adv. Cyclic Nucl. Res. 10: 1–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, R., Bergert, E., Wang, Y. et al. Chimeric proteins can exceed the sum of their parts: Implications for evolution and protein design. Nat Biotechnol 15, 439–443 (1997). https://doi.org/10.1038/nbt0597-439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing