Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Efficient Bacterial Export of a Eukaryotic Cytoplasmic Cytochrome

Abstract

The soluble core domain of cytochrome b5 of liver endoplasmic reticulum was appended at its amino terminus to full-length alkaline phosphatase secretory signal sequence including the ribosomal binding site. The chimeric precursor gene was placed under the transcriptional control of the native pho promoter in a prokaryotic expression vector. Induction of Escherichia coli by growth in a phosphate-limited medium resulted in abundant synthesis of cytochrome b5 as detected spectrophotometrically and by visual transformation of the bacteria to a pink color. The signal-appended cytochrome b5, but not the corresponding signal-deficient derivative, was translocated across the bacterial inner membrane and processed to yield authentic, haem-assembled cytochrome b5 within the periplasm. The eventual processing of the chimeric cytochrome b5 precursor was unusual regarding the known reaction specificity of signal peptidase. The exported, mature haemoprotein was biochemically indistinguishable from its native mammalian counterpart. At peak induction, approximately 6 mg of correctly matured cytochrome b5 per liter of culture was exported. This amount of cytochrome b5 constituted 6% (w/w) of the periplasmic protein. The appearance of the exported apo-cytochrome b5 preceded the formation of holo-protein. Thus the eukaryotic cytoplasmic protein was efficiently exported from E. coli and post-translocationally modified to generate a functional haemoprotein in the periplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stader, J.A. and Silhavy, T.J. 1990. Engineering Escherichia coli to secrete heterologous gene products. Methods in Enzymol. 185: 166–187.

    Article  CAS  Google Scholar 

  2. Duffaud, G.Y., March, P.E. and Inouye, M. 1987. Expression and secretion of foreign proteins in Escherichia coli. Methods in Enzymol. 153: 492–507.

    Article  CAS  Google Scholar 

  3. Dodt, J., Schmitz, T., Schäfer, T. and Bergman, C. 1986. Expression, secretion and processing of hirudin in E. coli using alkaline phosphatase signal sequence. FEBS Lett. 202: 373–376.

    Article  CAS  PubMed  Google Scholar 

  4. Fujimura, T., Tanaka, T., Ohara, K., Marioka, H., Uesugi, S., Ikehara, M. and Nishikawa, S. 1990. Secretion of recombinant ribonuclease T1, into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase. FEBS Lett. 265: 71–74.

    Article  CAS  PubMed  Google Scholar 

  5. Klein, B.K., Hill, S.R., Devine, C.S., Rowold, E., Smith, C.E., Galosy, S. and Olins, P.O. 1991. Secretion of active bovine somatotropin in Escherichia coli. Bio/Technology 9: 869–872.

    CAS  Google Scholar 

  6. Hsiung, H.M., Mayne, H.G. and Becker, G.W. 1986. High-level expression, efficient secretion and folding of human growth hormone in Escherichia coli. Bio/Technology 4: 991–995.

    Article  CAS  Google Scholar 

  7. Tataki, H., Morinaga, Y., Tsuchiya, M., Ikemura, H. and Inouye, M. 1988. Control of folding of proteins secreted by a high level expression vector, pIN-III-ompA: 16-fold increase in production of active subtilisin E in Escherichia coli. Bio/Technology 6: 921–928.

    Google Scholar 

  8. Schenkman, J.B., Jansson, I. and Robie-Suh, M. 1976. The many roles of cytochrome b5 in hepatic microsomes. Life Sciences 19: 611–624.

    Article  CAS  PubMed  Google Scholar 

  9. Oshino, N., Imai, Y. and Sato, R. 1971. A function of cytochrome b5 in fatty acid desaturation in rat liver microsomes. J. Biochem. (Tokyo) 69: 155–167.

    Article  CAS  PubMed  Google Scholar 

  10. Roy, D., Strobel, H.W. and Liehr, J.G. 1991. Cytochrome b5-mediated redox cycling of estrogen. Arch. Biochem. and Biophys. 285: 331–338.

    Article  CAS  Google Scholar 

  11. White, R.E. and Coon, M.J. 1980. Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. 49: 315–356.

    Article  CAS  PubMed  Google Scholar 

  12. Matthews, F.S. and Czerwinski, E.W. 1986. Cytochrome b5 and cytochrome b5 reductase from a chemical and X-ray diffraction viewpoints. Vol 4, p. 143–197.In: The Enzymes of the Biological Membranes. A. Martonosi (Ed.). Plenum Press, New York.

    Google Scholar 

  13. Zhang, H. and Sommerville, C. 1990. Soluble and membrane-bound forms of cytochrome b5 are the products of a single gene in chicken. Arch. Biochem. Biophys. 280: 412–415.

    Article  CAS  PubMed  Google Scholar 

  14. Giordano, S.J. and Steggles, A.W. 1991. The human liver and reticulocyte cytochrome b5 mRNAs are products from a single gene. Biochem. Biophys. Res. Comm. 178: 38–44.

    Article  CAS  PubMed  Google Scholar 

  15. Beck von Bodman, S., Schuler, M.A., Jollie, D.R. and Sligar, S.G. 1986. Synthesis, bacterial expression, and mutagenesis of the gene coding for mammalian cytochrome b5 . Proc. Natl. Acad. Sci. USA. 83: 9443–9447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gallagher, J., Kaderbhai, N. and Kaderbhai, M.A. 1992. Gene-dose dependent expression of soluble cytochrome b5 in Escherichla coli. App. Microbiol. and Biotechnol. 38: 77–83.

    Article  CAS  Google Scholar 

  17. Kaderbhai, M.A., Sligar, S.G., Barnfield, T., Reames, T., Gallagher, J., Mingyue, He, Mercer, E.I. and Kaderbhai, N. 1990. A novel series of pEX-PINK expression vectors for screening high-level production of (un)fused foreign proteins by rapid visual detection of PINK Escherichia coli. Nucleic Acids Res. 18: 4629–4630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaderbhai, N., Gallagher, J. and Kaderbhai, M.A. 1992. A pink bacterium as a reporter system signalling expression of a recombinant protein. DNA Cell Biol. 11: 567–577.

    Article  CAS  PubMed  Google Scholar 

  19. Li, P., Beckwith, J. and Inouye, H. 1988 Alteration of the N-terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc. Natl. Acad. Sci. USA. 85: 7685–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Estabrook, R.W. and Werringloer, J. 1978. The measurement of difference spectra. Methods in Enzymol. 52: 212–220.

    Article  CAS  Google Scholar 

  21. Hirel, P.H., Schmitter, J.M., Dessen, P., Fayat, G. and Blanquet, S. 1989. Extent of amino terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA. 86: 8247–8251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hopper, D.J., Jones, M.R. and Causer, M.J. 1985. Periplasmic location ofp-cresolmethylhydmxylas in Pseudomonas putida. FEES Lett. 182: 485–488.

    Article  CAS  Google Scholar 

  23. Chang, C.N., Kuang, W-J. and Chen, E.Y. 1986. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli. Nucleic Acids Res. 44: 121–125.

    CAS  Google Scholar 

  24. Walter, P., Gilmore, R. and Blobel, G. 1984. Protein translocation across the endoplasmic reticulum. Cell 38: 5–8.

    Article  CAS  PubMed  Google Scholar 

  25. Takahara, M., Sagai, H., Inouye, S. and Inouye, M. 1988. Secretion of human superoxide dismutase in Escherichia coli. Bio/Technology 6: 195–198.

    CAS  Google Scholar 

  26. Barra, D., Martini, F., Bannister, J.V., Schinina, M.E., Rotilio, G., Bannister, W.H. and Bossa, F. 1980. The complete amino acid sequence of human Cu/Zn superoxide dismutase. FEBS Lett. 120: 53–56.

    Article  CAS  PubMed  Google Scholar 

  27. Hjalmarsson, K., Marklund, S.L., Engstroem, A. and Edlund, T. 1987. Isolation and sequences of complementary DNA encoding human extracellular superoxide dismutase. Proc. Natl. Acad. Sci. USA. 84: 6340–6344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore, C.D., Al-Misky, O.N. and Lecomte, J.T.J. 1991. Similarities in structure between holocytochrome b5 and apocytochrome bs: NMR studies of the histidine residues. Biochemistry 30: 8357–8365.

    Article  CAS  PubMed  Google Scholar 

  29. Collier, D.N., Bankaitis, V.A., Weiss, J.B. and Bassford, P.J. 1988. The anti-folding activity of SecB promotes the export of Escherichia coli maltose-binding protein. Cell 53: 273–283.

    Article  CAS  PubMed  Google Scholar 

  30. Wickner, W., Driessen, A.J.M. and Hartl, F-U 1991. The enzymology of protein translocation across the Escherichia coli plasma membrane. Ann. Rev. Biochem. 60: 101–124.

    Article  CAS  PubMed  Google Scholar 

  31. Sjöstörm, M., Wold, S., Wieslander, Å. and Rilfors, L. 1987. Signal peptide amino acid sequence in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBO J. 6: 823–831.

    Article  Google Scholar 

  32. von Heijne, G. 1990. The signal peptide. J. Memb. Biol. 115: 195–201.

    Article  CAS  Google Scholar 

  33. Dev, I.K. and Ray, P.H. 1990. Signal peptidases and signal peptide hydrolases. J. Bioener. Biomembr. 22: 271–290.

    Article  CAS  Google Scholar 

  34. Georgiou, G., Telford, J.N., Shuler, M.L. and Wilson, D.B. 1986. Localization of inclusion bodies in Escherichia coli overproducing β-lactamase or alkaline phosphatase. Appl. Environ. Microbiol. 52: 1157–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bowen, G.A., Paredes, A.M. and Georgiou, G. 1991. Structure and morphology of protein inclusion bodies in Escherichia coli. Bio/Technology 9: 725–730.

    Google Scholar 

  36. Anba, J., Pages, J-M., Bemadac, A. and Lazdunski, C. 1987. New insights into the export machinery through studies on the synthesis of phosphate-binding protein in Escherichia coli, p. 73–77. In: Phosphate Metabolism and cellular Regulation in Microorganisms. A. Torriani-Gorrini, F. G. Rothman, S. Silver. A. Wright, and E. Yagil (Eds.). American Soc. Microbiol., Washington DC.

    Google Scholar 

  37. Shortle, D. 1983. A genetic system for analysis of staphylococcal nuclease. Gene 22: 181–189.

    Article  CAS  PubMed  Google Scholar 

  38. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor. New York.

    Google Scholar 

  39. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torriani, A. 1967. Alkaline phosphatase from Escherichia coli p. 224–235. In: Procedures in Nucleic Acid Research. G. L. Cantoni, D. R. Davies (Eds.). Harper and Row Publishers, New York.

    Google Scholar 

  41. Moore, A.L. and Proudlove, M.O. 1983. Mitochondnal and sub-mitochondrial particles, p. 153ndash;184. In: Isolation of Membranes and Organellcs from Plant Cells. J. L. Hall and A. L. Moore (Eds.). Academic Press, New York.

    Google Scholar 

  42. Hultquist, D.E. 1978. Methemoglobin reduction system of erythrocytes. Methods in Enzymol. 52: 463–473.

    Article  CAS  Google Scholar 

  43. Bradford, M. 1976. A rapid and sensitive method for quantification of micro-gram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, A., Kaderbhai, N., Evans, A. et al. Efficient Bacterial Export of a Eukaryotic Cytoplasmic Cytochrome. Nat Biotechnol 11, 612–618 (1993). https://doi.org/10.1038/nbt0593-612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0593-612

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing