Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis

Abstract

Herpesviruses are important pathogens in animals and humans. The large DNA genomes of several herpesviruses have been sequenced, but the function of the majority of putative genes is elusive. Determining which genes are essential for their replication is important for identifying potential chemotherapy targets, designing herpesvirus vectors, and generating attenuated vaccines. For this purpose, we recently reported that herpesvirus genomes can be maintained as infectious bacterial artificial chromosomes (BAC) in Escherichia coli . Here we describe a one-step procedure for random-insertion mutagenesis of a herpesvirus BAC using a Tn1721-based transposon system. Transposon insertion sites were determined by direct sequencing, and infectious virus was recovered by transfecting cultured cells with the mutant genomes. Lethal mutations were rescued by cotransfecting cells containing noninfectious genomes with the corresponding wild-type subgenomic fragments. We also constructed revertant genomes by allelic exchange in bacteria. These methods, which are generally applicable to any cloned herpesvirus genome, will facilitate analysis of gene function for this virus family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of pTsTM plasmids.
Figure 2: Strategy for transposon mutagenesis and analysis of the cloned mCMV genome.
Figure 3: Analysis of Tn mutants by restriction enzyme digestion and direct sequencing.
Figure 4: Characterization of mutants Tc9, Tc10, Tc13, and Tc14.
Figure 5: Rescue of nonviable mutants by complementation and construction of revertants.
Figure 6: Analysis of BAC stability.

Similar content being viewed by others

References

  1. Chee, M.S. et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154, 125–169 (1990).

    CAS  PubMed  Google Scholar 

  2. Rawlinson, W.D., Farrell, H.E. & Barrell, B.G. Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol. 70, 8833–8849 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mocarski, E.S. in Fields virology (eds Fields, B.N., Knipe, D.M., & Howley, P.M.) 2447–2492 (Lippincott-Raven, Philadelphia; 1996).

    Google Scholar 

  4. Hengel, H., Brune, W. & Koszinowski, U.H. Immune evasion by cytomegalovirus—survival strategies of a highly adapted opportunist. Trends Microbiol. 6, 190–197 (1998).

    Article  CAS  Google Scholar 

  5. Glorioso, J.C., DeLuca, N.A. & Fink, D.J. Development and application of herpes simplex virus vectors for gene therapy. Annu. Rev. Microbiol. 49, 675–714 (1995).

    Article  CAS  Google Scholar 

  6. Roizman, B. & Sears, A.E. in Fields virology (eds Fields, B.N., Knipe, D.M. & Howley, P.M.) 2231–2296 (Lippincott-Raven, Philadelphia; 1996).

    Google Scholar 

  7. Mocarski, E.S. & Kemble, G.W. Recombinant cytomegaloviruses for study of replication and pathogenesis. Intervirology 39, 320–330 (1996).

    Article  Google Scholar 

  8. Messerle, M., Crnkovic, I., Ziegler, H., Hammerschmidt, W. & Koszinowski, U.H. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 94, 14759– 14763 (1997).

    Article  CAS  Google Scholar 

  9. Delecluse, H.J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc. Natl. Acad. Sci. USA 95, 8245– 8250 (1998).

    Article  CAS  Google Scholar 

  10. Stavropoulos, T.A. & Strathdee, C.A. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol. 72, 7137–7143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berg, C.M., Berg, D.E. & Groisman, E.A. in Mobile DNA (eds Berg, D.E. & Howe, M.) 879–925 (American Society of Microbiology, Washington, DC; 1989).

    Google Scholar 

  12. Haas, R. et al. TnMax—a versatile mini-transposon for the analysis of cloned genes and shuttle mutagenesis. Gene 130, 23–31 (1993).

    Article  CAS  Google Scholar 

  13. Kahrs, A.F. et al. An improved mini-transposon system suitable for sequencing, shuttle mutagenesis and gene fusion. Gene 167, 53 –57 (1995).

    Article  CAS  Google Scholar 

  14. Posfai, G., Koob, M.D., Kirkpatrick, H.A. & Blattner, F.R. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J. Bacteriol. 179, 4426–4428 (1997).

    Article  CAS  Google Scholar 

  15. Jenkins, F.J., Casadaban, M.J. & Roizman, B. Application of the mini-Mu-phage for target-sequence-specific insertional mutagenesis of the herpes simplex virus genome. Proc. Natl. Acad. Sci. USA 82, 4773–4777 (1985).

    Article  CAS  Google Scholar 

  16. Jenkins, F.J. & Roizman, B. Herpes simplex virus 1 recombinants with noninverted genomes frozen in different isomeric arrangements are capable of independent replication. J. Virol. 59, 494–499 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, P.C., Levine, M. & Glorioso, J.C. Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. Science 236 , 576–579 (1987).

    Article  CAS  Google Scholar 

  18. Sacks, W.R. & Schaffer, P.A. Deletion mutants of the herpes simplex virus type 1 immediate early protein ICP0 exhibit impaired growth in cell culture. J. Virol. 61, 829– 839 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez, R., Sarisky, R.T., Weber, P.C. & Weller, S.K. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70 , 2075–2085 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Spaete, R.R., Gehrz, R.C. & Landini, M.P. Human cytomegalovirus structural proteins. J. Gen. Virol. 75, 3287–3308 (1994).

    Article  CAS  Google Scholar 

  21. Chang, Y.E. & Roizman, B. The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J. Virol. 67, 6348– 6356 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, M.I. Dysfunctional genomics: BACs to the rescue. Nat. Biotechnol. 15, 839 (1997).

    Article  CAS  Google Scholar 

  23. Ebeling, A., Keil, G.M., Knust, E. & Koszinowski, U.H. Molecular cloning and physical mapping of murine cytomegalovirus DNA. J. Virol. 47, 421–433 ( 1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blomfield, I.C., Vaughn, V., Rest, R.F. & Eisenstein, B.I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol. 5, 1447–1457 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hegele and A. Colomar for excellent technical assistance, R. Haas for providing the TnMax system, and J. Heesemann for helpful suggestions. This work was supported by grants from the Deutsche Forschungsgemeinschaft, the Boehringer Ingelheim Fonds, the Bundesministerium für Bildung und Forschung, and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. Koszinowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, W., Ménard, C., Hobom, U. et al. Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat Biotechnol 17, 360–364 (1999). https://doi.org/10.1038/7914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing