Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selection for a periplasmic factor improving phage display and functional periplasmic expression

Abstract

The efficiency of both phage display in Escherichia coli and periplasmic expression of recombinant proteins may be limited by the same periplasmic folding steps. To search for E. coli factors that improve the efficiency of both procedures, a library of E. coli proteins was coexpressed in a phagemid vector that contained a poorly folding single-chain Fv antibody (scFv) fragment fused to g3p. We enriched, by panning for antigen binding, those phagemids in which the amount of displayed scFv is highest. We thus identified the periplasmic protein Skp/OmpH/HlpA as improving phage display of a wide range of scFv fragments. This occurs as a result of an increase in the amount of hybrid protein displayed on the phage. Coexpression of skp also increases the functional yield of scFv fragments when expressed by secretion to the periplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bardwell, J.C. 1994. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14: 199–205.

    Article  CAS  Google Scholar 

  2. Makrides, S.C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli . Microbiol. Rev 60: 512–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin, J. and Hartl, F.U. 1997. Chaperone-assisted protein folding. Curr. Opin. Struct. Biol. 7: 41–52.

    Article  CAS  Google Scholar 

  4. Buchner, J. 1996. Supervising the fold: functional principles of molecular chaper-ones. FASEB J. 10: 10–19.

    Article  CAS  Google Scholar 

  5. Wall, J.G., Plückthun, A. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli . Curr. Opin. Biotechnol. 6: 507–516.

    Article  CAS  Google Scholar 

  6. Missiakas, D., Betton, J.M., and Raina, S. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21: 871–884.

    Article  CAS  Google Scholar 

  7. Pogliano, J., Lynch, A.S., Belin, D., Lin, E.C.C., and Beckwith, J. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11: 1169–1182.

    Article  CAS  Google Scholar 

  8. Danese, P.N. and Silhavy, T.J. 1997. The σE and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli . Genes Dev. 11: 1183–1193.

    Article  CAS  Google Scholar 

  9. De Las Peñas, A., Connolly, L., and Gross, C.A. 1997. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE . Mol. Microbiol. 24: 373–385.

    Article  Google Scholar 

  10. Missiakas, D., Mayer, M.P., Lemaire, M., Georgopoulos, G., and Raina, S. 1997. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24: 355–371.

    Article  CAS  Google Scholar 

  11. Smith, G.P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.

    Article  CAS  Google Scholar 

  12. Dunn, I.S. 1996. Phage display of proteins. Curr. Opin. Biotechnol. 7: 547–553.

    Article  CAS  Google Scholar 

  13. Bedzyk, W.D., Weidner, K.M., Denzin, L.K., Johnson, L.S., Hardman, K.D., Pantoliano, M.W., et al. 1990. Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody. J. Biol. Chem. 265: 18615–18620.

    CAS  PubMed  Google Scholar 

  14. Whitlow, M., Howard, A.J., Wood, J.F., Voss, E.W. Jr., and Hardman, K.D. 1995. 1.85 Å structure of anti-fluorescein 4-4-20 Fab. Protein Eng. 8: 749–761.

    Article  CAS  Google Scholar 

  15. Nieba, L., Honegger, A., Krebber, C., and Plückthun, A. 1997. Disrupting the hydrophobic patches at the antibody variable/constant interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10: 435–444.

    Article  CAS  Google Scholar 

  16. Chen, R. and Henning, U. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19: 1287–1294.

    Article  CAS  Google Scholar 

  17. Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bosshard, H.R., and Plückthun, A. 1997. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 201: 35–55.

    Article  CAS  Google Scholar 

  18. Holck, A. and Kleppe, K. 1988. Cloning and sequencing of the gene for the DNA-binding 17K protein of Escherichia coli . Gene 67: 117–124.

    Article  CAS  Google Scholar 

  19. Tesar, M., Beckmann, C., Roettgen, P., Haase, B., Faude, U., and Timmis, K.N. 1995. Monoclonal antibody against pIII of filamentous phage: an immunological tool to study pIII fusion protein expression in phage display systems. Immunotechnology 1: 53–64.

    Article  CAS  Google Scholar 

  20. Knappik, A. and Plückthun, A. 1995. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8: 81–89.

    Article  CAS  Google Scholar 

  21. Vaughan, T.J., Williams, A.J., Pritchard, K., Osborn, J.K., Pope, A.R., Earnshaw, J.C., et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Bio/technology 14: 309–314.

    CAS  Google Scholar 

  22. Krebber, C., Spada, S., Desplancq, D., Krebber, A., Ge, L. and Plückthun, A. 1997. Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions. J, Mol. Biol. 268: 607–618.

    Article  CAS  Google Scholar 

  23. Proba, K., Wörn, A., Honegger, A., and Plückthun, A. 1998. Antibody fragments without disulfide bonds, made by molecular evolution. J. Mol. Biol. 275: 245–253.

    Article  CAS  Google Scholar 

  24. Proba, K., Honegger, A. and Plückthun, A. 1997. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J. Mol. Biol. 265: 161–172.

    Article  CAS  Google Scholar 

  25. Jung, S. and Plückthun, A. 1997. Improving in vivo folding and stability of a single-chain Fv antibody by loop grafting. Protein Eng. 10: 959–966.

    Article  CAS  Google Scholar 

  26. Holck, A., Lossius, I., Aasland, R., and Kleppe, K. 1987. Purification and characterization of the 17 K protein, a DNA-binding protein from Escherichia coli . Biochim. Biophys. Acta 914: 49–54.

    Article  CAS  Google Scholar 

  27. Hirvas, L., Coleman, J., Koski, P. and Vaara, M. 1990. Bacterial “histone-like protein I” (HLP-I) is an outer membrane constituent? FEBS Lett. 262: 123–126.

    Article  CAS  Google Scholar 

  28. Koski, P., Hirvas, L., and Vaara, M. 1990. Complete sequence of the ompH gene encoding the 16-kDa cationic outer membrane protein of Salmonella typhimurium . Gene 88: 117–120.

    Article  CAS  Google Scholar 

  29. Koski, P., Rhen, M., Kantele, J., and Vaara, M. 1989. Isolation, cloning, and primary structure of a cationic 16-kDa outer membrane protein of Salmonella typhimurium . J. Biol. Chem. 264: 18973–18980.

    CAS  PubMed  Google Scholar 

  30. Hirvas, L., Koski, P., and Vaara, M. 1991. The ompH gene of Yersinia enterocolitica: cloning, sequencing, expression, and comparison with known enterobacterial ompH sequences. J. Bacteriol. 173: 1223–1229.

    Article  CAS  Google Scholar 

  31. Vuorio, R., Hirvas, L., and Raybourne, R.B., Yu, D.T., and Vaara, M. 1991. The nucleotide and deduced amino acid sequence of the cationic 19 kDa outer membrane protein OmpH of Yersinia pseudotuberculosis . Biochim. Biophys. Acta 1129: 124–126.

    Article  CAS  Google Scholar 

  32. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Article  CAS  Google Scholar 

  33. Delamarche, C., Manoha, F., Behar, G., Houlgatte, R., Hellman, U., and Wroblewski, H. 1995. Characterization of the Pasteurella multocida skp and firA genes. Gene 161: 39–43.

    Article  CAS  Google Scholar 

  34. Thome, B.M., Hoffschulte, H.K., Schiltz, E., and Müller, M. 1990. A protein with sequence identity to Skp (FirA) supports protein translocation into plasma membrane vesicles of Escherichia coli . FEBS Lett. 269: 113–116.

    Article  CAS  Google Scholar 

  35. Thome, B.M. and Müller, M. 1991. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol. Microbiol. 5: 2815–2821.

    Article  CAS  Google Scholar 

  36. Raetz, C.R.H. 1996. Bacterial lipopolysaccharides: A remarkable family of bioactive macroamphiphiles, 1035–1063 in Escherichia coli and Salmonella. Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., et al. (eds.). ASM Press, Washington, DC.

    Google Scholar 

  37. Geyer, R., Galanos, C., Westphal, O., and Golecki, J.R. 1979. A lipopolysaccha-ride-binding cell-surface protein from Salmonella minnesota. Isolation, partial characterization and occurrence in different Enterobacteriaceae. Eur. J. Biochem. 98: 27–38.

    Article  CAS  Google Scholar 

  38. Aasland, R., Coleman, J., Holck, A.L., Smith, C.L., Raetz, C.R., and Kleppe, K. 1988. Identity of the 17-kilodalton protein, a DNA-binding protein from Escherichia coli, and the firA gene product. J. Bacteriol. 170: 5916–5918.

    Article  CAS  Google Scholar 

  39. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  40. Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228–257.

    Article  CAS  Google Scholar 

  41. Day, L.A. 1969. Conformations of single-stranded DNA and coat protein in fd bacteriophage as revealed by ultraviolet absorption spectroscopy. J. Mol. Biol, 39: 265–277.

    Article  CAS  Google Scholar 

  42. Munro, S. and Pelham, H.R. 1986. An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  CAS  Google Scholar 

  43. Skerra, A. and Plückthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  Google Scholar 

  44. Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319–326.

    Article  CAS  Google Scholar 

  45. Reese, M.G. 1994. Diploma Thesis, German Cancer Research Center, Heidelberg, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothmann, H., Plückthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16, 376–380 (1998). https://doi.org/10.1038/nbt0498-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0498-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing